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Abstract

This paper introduces a machine learning workflow that emphasizes having an
artist-in-the-loop for creating audio-reactive videos by navigating the latent space
of StyleGAN3 using audio descriptor analyses. The artist pairs high dimensional
audio analyses conducted with the FluCoMa Toolkit with latent vectors of a custom-
trained StyleGAN3 model using a flexible two dimensional plot and real-time audio
scrubbing. A neural network is trained to predict the latent vectors from the paired
audio analyses. By prioritizing small, artist-curated datasets and using artist-in-the-
loop supervised learning processes, this system enables artists to embed personally
meaningful and abstract aesthetic decisions into a machine learning workflow.
This approach avoids the limitations of many existing methods, such as a reliance
on semantic audio-visual mappings and large, impersonal datasets. Rather than
focusing technical novelty, this paper proposes a methodology that centers an
artist-in-the-loop workflow integrating subjective artistic criteria with machine
learning algorithms. A case study for violin, tape, and video, demonstrates the
system’s ability to create tight integration where the correlations between audio
and visual elements are immediate and specific.

1 Introduction

This study presents a machine learning workflow to create audio-reactive videos by navigating
StyleGAN3’s (Karras et al., 2021) image-generating latent space using audio descriptor analyses.
Images generated from StyleGAN3’s latent vectors are manually paired with audio descriptors
creating a completely artist-defined and manageably-sized, multi-modal dataset enabling a dynamic
relationship between audio and video media. This system improves previous research by using audio
analyses capable of differentiating widely varying musical moments including noisy and un-pitched
sounds. Further, the results are more audio-reactive than previous studies on a moment-to-moment
basis, more explicitly responding to short-term sonic morphologies.

The case study for this system was a composition for violin, video, and tape, titled angle, in which
the author wanted to synchronize the video-morphing potential of StyleGAN3 with the tape part.
Audio-visual results of the proposed workflow can be seen here.

1.1 Previous Work

The StyleGAN family of model architectures (Karras, 2019; Karras et al., 2020, 2021) is well known
for the high quality images they generate. The quality of images has led some researchers to use
StyleGAN and other Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) to generate
images of spectrograms for audio resynthesis. (Palkama et al., 2020) In one case, spectrograms of
foley effects were inferred from the semantic content of video frames. (Ghose and Prevost, 2022)
Because of GANs common association with face generation, previous research that generating video
by navigating StyleGAN’s latent space via audio analyses has often aimed at matching moving lips
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Figure 1: Screen capture of the two dimensional plot for pairing latent vector-generated images with
audio analyses.

to a recorded voice, (Tan et al., 2024; Yin et al., 2022; Su et al., 2024) some including completely
synthesized video. One study which even aimed to generate a synthetic video of a speaking face
presenting a gender inferred from a target recorded voice. (Ngo) Contrastive learning models creating
multi-modal embeddings that include sound (Chen et al., 2022; Wu* et al., 2023; Ilharco et al., 2021)
have enabled semantic generation and manipulation of images (Lee et al., 2022) and video such
as generating video of fire from sounds of fire using StableDiffusion as the video-frame generator.
(Jeong et al., 2023)

Because all of the above studies focus on pairing sounds and visuals based on semantic meaning, they
are not suited for abstract artistic expression. While (Jeong et al., 2021) creates StyleGAN-generated,
audio-reactive videos by pairing audio and visual elements using subjective aesthetic criteria, their
results are limited by the choice of audio analyses used (onsets and chromagram) and an overuse
of smoothing, leading to a reliance on pitch- and chord- based music and a lack of immediacy in
the audio-reactivity. Additionally, because many of the preceding studies, especially those using
contrastive learning, aim to create a model generalized to a variety of real world applications, they
require datasets larger than are feasible or meaningful for individual artists to create, manage, and be
expressive with.

This paper proposes an aesthetic ideology different from the studies above: a workflow for individual
artists who want to use manageably-sized, personally-created datasets that have specific meaning and
content. (Rachel Fensham, 2023; Wang, 2019) While similar artist-in-the-loop approaches exist, such
as Akten’s Ultrachunk (2018) using mel-spectrograms, (Dyer et al., 2023) this workflow differs by:
(1) using richer audio descriptors that capture more timbral and spectral characteristics, (2) providing
a more flexible interface for abstract audio-visual pairing, and (3) leveraging StyleGAN3’s improved
latent space organization for better interpolation quality enabling coherent visual morphologies
abstracted from the source dataset.

This workflow creates a model that expresses an audio-visual relationship intended to exist inside
one composition or creative project. The same system can be used with different source images and
sounds creating new models and different artistic expressions for different projects. The strategies in
this study also model how artists can use machine learning creatively while actively avoiding ethical
conflicts that can arise from using certain data, such as copyright infringement, privacy concerns, and
labor exploitation. (Crawford and Paglen, 2021; D’ignazio and Klein, 2023)



2 Image Dataset & StyleGAN3 Training

The visual material for training StyleGAN3 was created by recording videos' of glass objects (bottles
and light bulbs) falling and breaking. These videos were edited down to specific moments that were
aesthetically desirable and then exported to a png sequence, center-cropped to squares, and resized to
1024x1024 pixels for training with StyleGAN3, resulting in 44,073 images. Training began from a
Flickr-Faces-HQ (FFHQ) checkpoint? (Karras, 2019) and trained for 480,000 images.

3 Audio Dataset

In order to represent and differentiate moments in the tape part, every FFT frame of the audio (sample
rate = 44100, window size = 1024, hop size = 512) is analyzed in SuperCollider (McCartney, 2002)
using 23 descriptors from the FluCoMa Toolkit (Tremblay et al., 2021): spectral centroid, spectral
spread, spectral skewness, spectral kurtosis, spectral rolloff, spectral flatness, spectral crest, 13
MFCCs (skipping coefficient 0, starting at coefficient 1), pitch, pitch confidence, and loudness.?
Any data points with a loudness below -60 dBFS was removed from this dataset. The remaining
dataset was standardized to mean of 0 and standard deviation of 1. Using Principal Component
Analysis, the top 19 principal components were kept, maintaining greater than 99% of the variance.
Finally, Uniform Manifold Approximation and Projection (UMAP) (Mclnnes et al., 2018) was used
to embed* the data into a two dimensional space for use as described in Section 4.

4 Pairing Images with Audio

The desired behavior is to have specific audio analyses generate specific images via StyleGAN3
and interstitial audio analyses generate interpolated, interstitial images, therefore creating video
morphology tightly corresponding to the sonic morphology. Initial experiments attempted to create the
audio-analysis-to-image-generation relationship automatically using various unsupervised techniques
including using KMeans clustering, linear assignment, and principal component-matching, however,
inserting the artist-into-the-loop by manually pairing the data for supervised learning led to the
best results.’ Experimentation determined that carefully selecting and pairing the audio and image
examples had the greatest impact on the visual results, so special care was taken to create a system
for managing and paring these data points in a fluid and meaningful way.

First, in order to get a sense of what kinds of visual outputs the trained StyleGAN3 model would
provide, 500 random latent vectors (in 512 dimensional space) and their resulting images were
generated (for an example, see Figure 2). From these images, 17 were selected in order to represent
the variety in the results and for their high image quality since these images will likely end up in the
resulting video.

Next, the two dimensional UMAP embedding of the audio analyses was plotted (in SuperCollider
using FluidPlotter, see Figure 1) with a visual interface allowing for scrubbing across the sound file,
hearing the results, and seeing where on the two dimensional plot each sonic moment was embedded.®
Overlaid on the plot were the 17 chosen images. These images were manually moved to the two
dimensional positions on the plot corresponding to the sound analyses desired to predict the given
image.

In this visual interface, when the audio is playing, a 30 frames-per-second mockup is created by
displaying the image nearest to the currently heard sound analysis (in the 2 dimensional space). While
this “video” of course does not include the StyleGAN3 interpolations it is useful to get a sense of
what kinds of target images might be seen in the final video.

11920x1080 resolution at 120 frames-per-second

2s'cyleganS—r—fthu—1024}{1024 .pkl

3All FFT analyses ranged from 20 Hz to 10 kHz.

*The UMAP parameters were number of neighbors = 15 and minimum distance = 0.1.
>as is often the case

8Silent moments (below -60 dBFS) initially removed from the dataset were represented by the audio analysis
of the most recent non-silent moment



Figure 2: One latent vector-generated image of a light bulb shattering.

Next, each of the 17 target latent vectors need to be paired with one audio analysis vector (creating
an admittedly but also desirably small-artist-defined dataset). While the visual interface enabling the
pairing is in two dimensions, we want to maintain the higher dimensional structures (512 dimensions
of the StyleGANS3 latent space and 23 dimensions of the audio analyses) for actually learning these
relationships. For each image on the plot, the nearest neighbor audio analysis in the two dimensional
space was found. That audio analysis’ standardized 23 dimensional vector representation was paired
with the image’s 512 dimensional latent vector creating a dataset of 17 input-output pairs.

5 Training & Inference

A fully connected neural network with one hidden layer of 40 neurons using the ReL.U activation
function (and no activation function on the output) was trained (using PyTorch (Paszke et al., 2017)).
Mean squared error was used as the loss function with an Adam optimizer beginning at a learning
rate of 0.01. Training showed improvement over 500 epochs clearly over-fitting to a loss five orders
of magnitude smaller than at the start. Over-fitting in this case is acceptable or even desirable because
there is no real-world use-case it needs to generalize to, instead the precision of predictions will
ensure the desired images will be generated by StyleGAN3.

In order to create the timeseries of StyleGAN3 latent vectors from the timeseries of standardized audio
analyses three things needed to happen: (1) the timeseries needed to be resampled from about 86 Hz
(because of the hop size of 512) to 30 Hz (to create a video at 30 frames per second), (2) the latent
vectors needed to be inferred from the audio analysis vectors, and (3) smoothing must be applied to
the timeseries to smooth out jitter in the audio analyses. A grid search was conducted attempting



different ordering of operations as well as different parameters for smoothing and resampling. After
subjective aesthetic assessment of the results, the following process was determined preferable: First,
smoothing is applied to the timeseries of standardized audio analyses using a leaky integrator with an
coefficient of 0.8 (always between 0-1, higher = more smoothing). Second, the smoothed timeseries
of audio analyses is down-sampled to 30 frames-per-second by using the mean value of a moving
kernel 1/30th of a second in width. Lastly, the data points in the smoothed and resampled timeseries
of audio analyses are used to infer StyleGAN3 latent vectors using the trained neural network. The
resulting timeseries of inferred latent vectors are then used for image generation and sequenced into a
video using ffmpeg. (FFmpeg Developers, 2024) The source audio was added later in video editing
software.

6 Case Study: angle

In order to increase the stakes of the experimentation outlined in this study and provide some
context for qualitative aesthetic assessment of the results, a piece was composed with the intention of
incorporating this workflow. The aesthetic objective is to create an abstract audio-visual composition
where visual transformations directly correspond to sonic morphologies so the audience can perceive
subtle audio characteristics through their visual representations. This differs from the semantic
approaches described above (Ghose and Prevost, 2022; Tan et al., 2024; Yin et al., 2022; Su et al.,
2024; Ngo; Chen et al., 2022; Wu* et al., 2023; Ilharco et al., 2021; Lee et al., 2022; Jeong et al.,
2023) that rely on conceptual audio-visual associations. Videos of glass objects (bottles and light
bulbs) falling and breaking were used to generate the images for training StyleGAN3 (described in
Section 2). The tape part (the audio described in Section 3) was constructed of modular synthesizer
recordings. The violin part was composed (prior to creating the video as described in this paper) by
transcribing the timbre, pitches, dynamics, etc., of the tape part for the violinist to perform.

The author determined the video results of the workflow described above to be compelling in some
moments and too noisy/chaotic in other moments. Reflecting on the dataset chosen, noisy sounds
and images of shattering glass both have higher entropy than other possible sources, which is more
challenging for audio analyses and convolutional neural networks represent in compact dimensions.
The author’s artistic interest in high entropy media is an interesting challenge to navigate when using
algorithms that are more "successful" with lower entropy data. In the resulting video, when the
audio-visual coordination was strong, there was a sense of the video being directly controlled by the
sonic morphology. In contrast to (Jeong et al., 2021) the author chose to design the system to prioritize
frame-to-frame audio-visual correspondence over temporal smoothness. While this creates some
abrupt transitions, it ensures immediate responsiveness to sonic changes. The visual "chaos" in certain
moments can be understood as an authentic representation of the sonic complexity, suggesting that
the system’s apparent "failures" may actually constitute a successful translation of audio entropy into
visual entropy. Future work can explore temporal modeling approaches that maintain audio-reactivity
while improving visual continuity, such as incorporating optical flow constraints, more/different
temporal smoothing in the latent space, or lower entropy datasets.

In order to compose these results into angle, passages that were particularly compelling were used,
while for other moments of the video design, non-StyleGAN3 generated videos of the breaking glass
were used to maintain aesthetic cohesion and develop visual motives. Artistic editing of algorithmic
outputs is an important part of the author’s creative practice, reflecting the belief that subjective
aesthetic assessment and human intuition are key elements in creative practice. A completed version
of the work can be seen here.

7 Future Research

One challenge with the current workflow is the common problem of the differentiation in the
StyleGANS3 latent space. Conditioning the latent space with labels included in the initial training
of might make the latent space more differentiable (Brock, 2018) and provide clearer and more
interesting interstitial interpolations.

While over-fitting in this case is acceptable because of the very specific use case and the desire for
precise predictions, a less over-fit network might create smoother interstitial interpolations because of
fewer hyperplanes dividing the high dimensional space creating more linear interpolations. (Prince,
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2023) Many strategies such as smaller network sizes, different activation functions, and regularization
should be tried. Additionally, using a small dataset such as this, direct regression from audio or
audio analyses to images should be explored (skipping over the latent space matching), which might
create a stronger sense of audio reactivity at the expense of the GAN’s high image quality and well
organized latent space.

Lastly, the very piece-meal structure of this system allows for many experiments that may improve
performance. One could change the audio analyses, the image-source content, the data preprocessing,
the size of the supervised learning dataset, the training process, the smoothing and down-sampling
strategies, and more. Each of these is sure to have downstream effects on the results. I hope that
others will pick up this architecture and find decisions to tailor it to their idiosyncratic artistic goals.

8 [Ethics Statement

All of the data used in training was created by the author. The Flickr-Faces-HQ (FFHQ) dataset
has a privacy policy that can be found in their GitHub repo.” The author has made efforts to make
the research and artistic use of these findings as accessible and inclusive as possible. All of the
code is open source and available on GitHub under the GNU General Public License v3 in this
repo. The ethical advantages of this approach include: (1) avoiding copyright infringement by using
only self-created content, (2) eliminating privacy concerns associated with using others’ images or
voices, and (3) preventing exploitation of unpaid labor in dataset creation. This methodology can
be generalized to other artistic applications where artists wish to maintain ethical control over their
machine learning workflows.

All of the StyleGAN3 training and inference was done on a GPU that is part of the Yale University
High Performance Computing Grace Cluster. The remaining technical work was performed on a
MacBook Pro laptop. All of the SuperCollider and Python code that does the analysis and machine
learning has been created with the aim of computational efficiency for minimal energy usage.

9 Conclusions

This paper presents an artist-in-the-loop approach to machine learning-based audio-visual creative
practice, emphasizing the importance of a small, personally created dataset and human intuition in
the design of a reactive media system. Rather than pursuing generalizable trainings or semantic
mappings, this methodology foregrounds subjective intuition and aesthetic specificity, enabling artists
to craft personalized abstract correspondences between sound and image. This work contributes
to a growing discourse on artist-in-the-loop machine learning by offering a transparent, modifiable
methodology for others to adapt to their own creative practices.
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