
Human and Artificial Intelligence Alignment: AI as Musical

Assistant and Collaborator

Ted Moore

May 26, 2021

1

Contents

1 Introduction 5
1.1 The many faces of Assistants and Collaborators . 7

2 Recognizing the Collaborator: Emergent Agency in Complex Systems 12
2.1 What do we mean when we say Artificial Intelligence?: Towards a Phenomenological Definition 13
2.2 The Pursuit of Contingency, or, the Desire for a Collaborator 14

2.2.1 Emergence of Agency in Complex Systems, or, Recognizing the Collaborator 16
2.2.2 Separation of the System from the User . 18
2.2.3 The Role of Complexity . 18
2.2.4 Mirroring, or, Recognizing Oneself in the Collaborator 20

2.3 Conclusion . 20

3 Practice-based Research in AI for Music Making 20
3.1 Using Audio Descriptors . 20
3.2 Artificial Intelligence as Assistant . 21

3.2.1 Timbral Classification for Sound-to-Light Parameter Mapping 21
3.2.2 Frequency Modulation Resynthesis . 24

3.3 Artificial Intelligence as Collaborator . 29
3.3.1 The harmonic series strikes again: emergent tonality in feedback resonant tubes 29
3.3.2 Creating Hamiltonian Paths for Phrase and Form Generation 59

4 Conclusion: Human-AI Alignment 65
4.1 A few brief answers to the question “Why?” . 65
4.2 The Optimization Problem (aka. Composing) . 66
4.3 Human-AI Alignment . 67

4.3.1 Approaching the Optimization Problem with Randomness 68
4.3.2 Approaching the Optimization Problem with a Complex System 70
4.3.3 Approaching the Optimization Problem with Machine Learning 72

4.4 The Sweet Spot of Alignment: Assistants and Collaborators 74
4.5 Conclusion . 76

References 77

Appendices 79

A Code for SynthMIRNRT 79

B Code for Section 3.2.1 85

C Code for Section 3.2.2 106

D Code for Section 3.3.1 127

E Code for Section 3.3.2 142

2

List of Figures

1 A list of descriptors characterizing assistants and collaborators 7
2 Two-dimensional source bonding continuum taken from Sam Pluta’s Laptop Improvisation in

a Multi-Dimensional Space . 10
3 List of all 105 audio descriptors extracted with author’s SynthMIRNRT SuperCollider Class . 21
4 Data flow diagram of sound-to-light mapping system for feed. 23
5 Spectral spread values (color) for each data point represented by its index (x axis) and mod-

ulating frequency (y axis). Top graph shows before filtering data. Bottom plot shows after
filtering data. 27

6 Frequency values (color) for each data point represented by its carrier frequency (x axis) and
modulating frequency (y axis). Top graph shows before filtering data. Bottom plot shows
after filtering data. 28

7 Feedback tube signal flow including control methods 1: Partial Mode & 2: Modulation Mode. 30
8 Screenshot of “tube controller” interface for hollow created in the iPad app Lemur. 31
9 Histograms of tubes’ sounding frequencies when operating independently. 32
10 Plot of tube frequencies for opening of hollow. 34
11 Signal flow of tubes in series. 35
12 Histograms of the tubes’ analysis frequencies while in series. 36
13 All three tubes frequencies though time, showing periodic repetition of certain frequencies. . . 37
14 Frequency changes in the three-tube feedback system being passed around the tubes. 38
15 Sonogram of each tube with pitch tracker overlayed. 39
16 More tube interactions. 40
17 More tube interactions. 41
18 2D histogram of frequencies in A and C tubes. 42
19 2D histogram of frequencies in C and D tubes. Gray circle represents the stable state seen in

Figures 24 and 25 . 43
20 2D histogram of frequencies in D and A tubes. 44
21 Histogram of all three tubes’ (in series) frequency analyses combined. 46
22 A transitional moment demonstrated by the distance of each tube’s sound frequency from its

nearest partial. 47
23 Two stable states, each of which is near a partial in two of the harmonic series. 47
24 A stable state distant from the unison line. 48
25 A stable state distant from the unison line. 48
26 Frequency of C and D tubes in relation to A tube and appearance of “battle grounds.” 50
27 Zoomed in region of “battle grounds” revealing a larger battle ground created by the non-

adjacent stable states C natural and E natural . 51
28 “Battle grounds” seen by comparing A and C tubes. 52
29 “Battle grounds” seen by comparing A and D tubes. 53
30 Resonances histograms of saxopone neck (top) and full construction (bottom) as heard in hollow. 54
31 Resonance histogram of the saxopone (full construction) while the tubes are in series. 55
32 Frequency of saxophone audio analysis in relation to tubes’ harmonic series, while being

performed with only the neck. 56
33 Excerpt of saxophone frequencies showing clear pitches in relation to tubes harmonic series. . 56
34 Unison motion between saxophone and C tube analysis frequencies. 57
35 Two-dimensional histogram of sax and A tube analysis frequencies. 57
36 Two-dimensional histogram of sax and C tube analysis frequencies. 58
37 Two-dimensional histogram of sax and D tube analysis frequencies. 58
38 Comparative Matrix of sound source positions in original file (y axis) and positions in minimal

distance Hamiltonian Path (x axis) for sound sources: saxohpone, bassoon, drums, bells, no-
input mixer, and synthesizer. 62

3

39 Comparative Matrix of sound source positions in original file (y axis) and positions in minimal
distance Hamiltonian Path (Traveling Salesperson Solution) (x axis) for sound sources from
“quartet”. 63

40 Comparative Matrix of sound source positions in original file (y axis) and positions in ordered
one dimensional UMAP projection (x axis) for sound sources from “quartet”. 64

4

1 Introduction

Electronic music composers have witnessed several critical technological revolutions in the field’s short

history. The affordability of analog tape allowed creators to manipulate recordings in new ways in the

1950s, launching the genre musique concrète. Extensive research into synthesizers in the 1960s offered new

means of creating and sculpting sound, which directed the ethos of pop music in the 1970s and ‘80s. In the

1990s, personal computers became fast enough to process digital audio in real-time, leading to a wave of

new works using live manipulation of sound from performing instrumentalists. Each revolution was

launched by advancements in technology that empowered large numbers of composers to easily incorporate

these tools into their creative processes. The technological revolution that electronic music is currently

experiencing is the use of data science and machine learning.

This research outlines my thinking behind and implementations of artificial intelligence, machine

learning,1 and data science tools in my compositional and improvisational practice. One reason I am

interested in using these technologies is the same reason they are finding uses across many disciplines and

industries: automation. Ge Wang, in his article Humans in the Loop: The Design of Interactive AI

Systems, reflects on what it means to consider the role of automation in the context of art, saying, “when

we imagine ‘automating’ a pursuit like music making, we’re forced to balance the product of work with

something deeper — the meaning we derive from the process of doing it.” (Wang 2019) As he suggests, I

agree that the goal is not to remove myself from the process of art making or to fully “automate” the

compositional or creative process. However, in my experience, the use of AI has not forced a “balancing”

between product and process. Using AI has not minimized the role or meaning of process (or its

duration–quite the opposite I believe), but has changed what my process is (a sentiment echoed by AI and

creativity researcher Rebecca Fiebrink (CeReNeM 2019)). While using AI in my creative work, my process

is comprised of activities that stimulate my creative thinking and feed my energy in ways that other

strategies do not. In addition to pursuing this excitement, another goal of developing new and idiosyncratic

processes with AI is the belief they will lead to new sounds, forms, compositional conceits–or more

generally, new music–thereby expanding, advancing, and individuating my artistic voice.

Even with artificial intelligence at the center of these goals, it is not true that AI is at the center

of all my work; most creative decisions and tasks are still carried out manually and many are in

collaboration with an AI system. Wang explains the value in this approach, and clarifies his title: Humans

1Throughout this paper, as will become more clear, machine learning is considered a subcategory of artificial intelligence
generally containing algorithms that improve their predictive accuracy through iterative training or trial and error.

5

in the Loop, saying, “It’s clear there is something worth preserving in many of the things we do in life,

which is why automation can’t be reduced to a simple binary between ‘manual’ and ‘automatic.’ Instead,

it’s about searching for the right balance between aspects that we would find useful to automate, versus

tasks in which it might remain meaningful for us to participate.” (Wang 2019) Finding this balance has

been the process of much of the research I present in Section 3, in particular the avoidance of a common AI

pitfall: throwing data at a problem or idea and hoping AI will “figure it out”. Instead of dreaming for this

“total automation”, I have learned to approach questions and challenges by starting from my artistic goals

and identifying what AI can do (i.e., what can or should be automated) to help achieve them more quickly,

successfully, interestingly, enjoyably, etc.

Pursuing these meta-goals has clarified two broad frameworks for how I think about implementing

artificial intelligence in my work: (1) AI as assistant and (2) AI as collaborator. Assistants carry out tasks

in prescribed, predictable ways, enabling humans in the performance or process (i.e., “Humans in the

Loop”) to focus on other creative parameters. This framework most closely resembles AI automation as it

is used in other industries or disciplines. To use Wang’s words, creating an AI assistant consists of

identifying the “aspects that [one finds] useful to automate” and separating those from “tasks in which it

might remain meaningful...to participate.” (Wang 2019) While technology (and the automation it

provides) has generally been seen in an “assistant” capacity (or even labeled, such as the “Personal Digital

Assistant”), my use of “assistant” represents something more specific: a more intelligent agent performing

a more complex task usually involving data processing. Because of the complexity of the task, the AI must

be trained (machine learning terminology used very intentionally here), similar to how a human supervisor

might train a human assistant.

AI collaborators, which are given more attention in this paper, are more complex systems,

resisting predictability, and are capable of “surprising” human users during the creative process with

sounds, forms, gestures, connections, or other creative ideas not readily apparent to the human. These

surprises or “creative suggestions” offered by artificially intelligent collaborators can then be responded to,

curated, further explored, or denied, depending on the artistic moment or goal. Visual artist Mario

Klingemann describes this process as he sorts through thousands of pictures created from Generative

Adversarial Neural Networks to select the ones determined aesthetically pleasing (to him). (Simonite 2017)

The AI collaborator, trained on thousands of images chosen by Klingemann, offers creative suggestions

from within the learned parameter space to choose from. The “collaborator” framework less resembles

“automation” as it might be viewed in other disciplines, but instead resembles the related, but more

6

Assistant Collaborator
perceived as a “solo” performance perceived as a “duet” performance

less time delay and/or distortion of human inputs sufficiently distinct from human inputs
extends or elaborates human outputs outputs separate from human actions

repeatable results surprising results
elicits third person descriptions elicits first person descriptions

control contingency

Figure 1: A list of descriptors characterizing assistants and collaborators

agential, “automaton”. As will be seen in Sections 1.1 and 2.2.1, the emergence of agency in these AI

collaborators does not require machine learning algorithms; the interest in agential technologies has been

strong in electronic music since its conception and continues to be a prevalent tool used by electronic

musicians. A chart of some descriptions of assistants and collaborators can be seen in Figure 1.

This paper first outlines the differences in how assistants and collaborators are perceived,

identified, and experienced. These comparisons are not intended to draw clear categorizations or even

opposing ends of a continuum, but rather focus on how these frameworks resonate with the experience of

using music technologies. Section 2 more closely analyzes how perceptions of agency and agents emerge

from the use of these technologies, pointing towards a phenomenological definition of artificial intelligence

in this context. Section 3 details four recent projects where I employ music technologies as assistants and

collaborators. Finally, Section 4 concludes by considering how music technology tools can align with

composers’ values in different ways for different purposes.

1.1 The many faces of Assistants and Collaborators

The concepts of assistant and collaborator appear with different names in many writers’ thinking about the

role of technology in music and creativity. These labels are not intended to be categorical or even on

opposing ends of one continuum. They overlap and engage with other concepts in ways that blur, but also

deepen, their definitions. A few examples are interpreted here to elaborate my use of these terms and their

relation to other research.

Solo vs. Duet In 1991, Robert Rowe offered a few classification systems for interactive music

technologies, the most relevant of which are the “instrument” and “player” paradigms. (Rowe 1993) He

describes “instruments” as being “concerned with constructing an extended musical instrument:

performance gestures from a human player are analyzed by the computer and guide an elaborated output

exceeding normal instrument response. Imagining such a system being played by a single performer, the

7

musical result would be thought of as a solo,” which is contrasted with, “Systems following a player

paradigm try to construct an artificial player, a musical presence with a personality and behavior of its

own, though it may vary in the degree to which it follows the lead of a human partner. A player paradigm

system played by a single human would produce an output more like a duet.” (Rowe 1993) The most

interesting distinction he makes between “instrument” and “player” is the perception of a performance as

being a solo or duet, which can be a useful way of identifying assistants and collaborators. During a “solo”,

the technology used is only assisting the performer; clearly it is doing some work in producing the music,

but is not perceived as separate or agential. During a “duet”, the work being done by the technology is

separate from the human, therefore perceived as a collaborator. Rowe implies that the operative perceiver

in making this distinction is the audience, however in my analyses (and most other descriptions) it is the

perception of agency by the composer/designer/performer that identifies technology as a “collaborator”.

The process of perceiving agency is explored in Section 2.2.1.

Perception of Musical Intentionality In order to identify whether someone is perceiving a technology

as an assistant or collaborator, one can pay attention to the way the technology is described. Marc Leman,

offers a useful distinction in his chapter on musical intentionality, saying, “third-person descriptions are

about repeatable measurements of phenomena”, while “first-person descriptions in musicology draw upon

interpretations of intentions attributed to music...moving sonic forms receive the status of actions to which

intentionality can be attributed”. (Leman 2008) Although Leman’s terms organize how music is described

and most music could be described in both ways, considering when each might be used to describe AI

systems is useful. Using a first person description requires a listener to first perceive a moving sonic form as

an “action”, only then can intentionality be attributed to either the human or the technology. To what the

intentionality is attributed, then, depends on the performance context. To use Rowe’s paradigms, if the

intentionality were perceived to be separate from the human’s intentionality, creating a “duet”, the AI

would be a collaborator. If the intentions behind the moving sonic forms are perceived to originate from

the human performer, the AI is an assistant, as it would “extend” and “elaborate” the human’s intentions

(Rowe 1993). Leman’s third person description (“repeatable measurements of phenomena”) then becomes

relevant, as a way of describing interactions between human performers and AI assistants. A measurable

repeatability of the AI system’s output based on similar human inputs is necessary for the phenomena

relating them to be perceived (e.g., every time the human does x, the AI system does y). Furthermore, the

repetition of perceiving this phenomena (AI as “extending” and “elaborating” the human’s intentions)

8

establishes and maintains it as an assistant (i.e., the perception of shared intention is preserved even as the

musical content transforms).

Intention Bonding Another way of considering how systems could be perceived as either assistant or

collaborator is by analyzing the sonic relationship between the human and technology in real-time

performance. In his dissertation, Laptop Improvisation in a Multi-Dimensional Space (Pluta 2012), Sam

Pluta presents a two-dimensional continuum (temporal offset and sonic distortion, seen in Figure 2) in

which to position relationships between human sound inputs and computer music outputs. A computer

music system that outputs sound at no (or very little) time delay and no sonic distortion (e.g., just

amplification) will easily be heard as relating to and originating from the the human’s intention (as an

assistant). The further on either continuum (or both) that a system’s response is placed, the less likely it is

to be perceived as sharing the human’s intentions, as it would be less sonically related (more distorted)

and/or less synchronized with the human’s intentions. Moving along these dimensions can be seen as a

process by which the perceived intention of a system is “pulled away” from the intention of the human

performer. It is important to see these dimensions (and surely others involved in the process) as continua

and not categorical representations. There is, however, likely a distance threshold in this high-dimensional

space beyond which the system’s output is perceived as separate from the human’s intentions. Pluta’s

continuum clarifies my use of Leman’s third person description, which, “provides the results of a

measurement”. (Leman 2008) The relevant repeatable measurement is identifying where on Pluta’s

continuum the output of the system lies. Close enough to the origin (graphically and sonically) will prevent

first person descriptions, directing one to third person descriptions (likely commenting on the computer

music system’s placement the continuum, such as, “I repeatedly observe that when the human does x, the

computer does y”). Sufficient distance from the origin enables first person descriptions (perhaps about the

“duet” nature of the performance). However, perceiving a system’s output as separate does not always

create perceptions of agency, which is explored further in Section 2.2.1.

Intention in Instrument Design Harry Collins and Trevor Pinch describe the concepts of assistant

and collaborator playing out between the desires of synthesizer engineers and musicians saying, “The

history of the synthesizer can be seen as a battle ground between the engineers’ desire for control and

repeatability and the artists’ desire for contingency...The engineer wants the machine to be reliable...The

artists...want an instrument not a machine–something that will play something unique, something which,

although subject to control, is capable of pushing them beyond their own preconceptions–something that

9

Figure 2: Two-dimensional source bonding continuum taken from Sam Pluta’s Laptop Improvisation in a
Multi-Dimensional Space

can surprise them.” (Collins and Pinch 2006) By comparing the desires of synthesizer engineers and artists,

they suggest that, in this case, the engineers were approaching the synthesizer as an assistant (or a

“machine”), while the artists were hoping for it to be a collaborator (designated by the label, “instrument”,

the opposite of Rowe’s definition of the term). The engineers wanted the synthesizers to be predictable,

preventing any unintentional sounds or effects, ensuring the only perceived intentions would be from the

user (thereby creating a “solo” performance experience). The artists wanted to be “surprised” and

“pushed”–or more generally be affected by an agent (i.e., collaborator) when working with the synthesizer.

The writers also acknowledge the artists’ desire for some control–some shared commonality or language

with their synthesizer/collaborator to then work from. The historical framing of this conflict between

engineers and artists anticipates the trend in electronic music of many composers engaging more deeply in

the “engineering” side of the practice, perhaps as a strategy to achieve more specific control over the

contingency in their instruments (as will be seen later in the work of Laetitia Sonami). The trend of

composer-technician also extends into the current developments in AI for music making, evidenced by the,

often large amount of, technical machine learning knowledge needed to engage with machine learning tools

for music making.

10

Compositional Intentionality and Contingency Gil Weinberg makes a delineation between control

and contingency also by way of historical comparison: structure centered networks and process centered

networks.

This differentiation can be related to the tension that emerged in the midst of the 20th century
between the radicalization of musical structure and composer control, practiced mainly by
‘avant-garde’ and ‘post-serialist’ composers such as Karlheinz Stockhausen and Pierre Boulez
on one hand, and the escape from structure toward ‘process music’ as was explored mostly by
American experimentalists such as John Cage and Steve Reich..In such procedural process-based
music, the composer sacrifices certain aspects of direct control to create an evolving context by
allowing rules (in closed systems) and performers (in open ones) to determine and shape the
nature of the music. (Weinberg 2005)

Here again, control is contrasted with concepts like “emergent” and “evolving” where contingency plays a

collaborative role in determining and shaping the performance. However, because agency, or “the agent”, is

harder to identify in Weinberg’s process centered networks, it clarifies the role of technology in creating a

perception of agency. Works that collaborate with contingency to determine their outcome (i.e., process

centered networks), but do not center technology, are less prone to elicit identifications of their

contingencies as agential collaborators. This may be because humans are primed to attribute agency to

technology or because technology systems are more complex (than say, dice), it is the complexity of the

contingency source that enables perceptions of agency.

Meta-Intentionality In discussion of his computer program Voyager, George Lewis equates

unpredictability with agency, but on multiple time scales, saying,

If the computer is not treated as a musical instrument [(to use Rowe’s definition, i.e.,
“assistant”)], but as an independent improvisor [(i.e., collaborator)], the difference is partly
grounded in the form of program responses that are not necessarily predictable on the basis of
outside input...Voyager’s response to input has several modes, from complete communion to
utter indifference...while tendencies over a long period of time exhibit consistency,
moment-to-moment choices can shift unpredictably. It is a fact, however, that the system is
designed to avoid the kind of uniformity where the same kind of input routinely leads to the
same result. (Lewis 2000)

Lewis’ description shows that he views Voyager as a collaborator with which he performs a duet, because

the program’s responses, “are not necessarily predictable on the bases of outside input” (i.e., it does its

own thing). The way he has designed Voyager, however, adds another layer of agency to the program by

creating responses to outside input that range from “utter indifference”, showing separate intentions, to

“complete communion” (Lewis 2000), in which Voyager closely mimics the human’s performance,

11

recreating or representing the human’s intentions as an assistant (i.e., an “elaborated output exceeding

normal instrument response” [Rowe 1993]). This added control over the contingency of the system allows

Voyager to move between assistant and collaborator throughout one performance giving it an added layer

of agency–the ability to change the degree of its agency.

Conclusion To sum up, these accounts reveal how other researchers have identified technology as

perceived, described, and designed to be an assistant or collaborator. These writers also acknowledge the

fluidity of these distinctions and the precarity of the relation between them. Weinberg mentions the

interplay and potential conflict they pose in the creative process saying, “It is important to note that

although most networks combine process and structure-based elements, creating a successful balance

between these aspects is not a trivial task, as many of the elements are contradictory in nature” (Weinberg

2005). Collins and Pinch hedge against their contingency and control dichotomy saying, “Life is

compromise and artists sometimes long for control just as scientists dream of the serendipitous discovery.”

(Collins and Pinch 2006) At this point an important distinction must be considered: perceiving a

technology as separate from a human is different from perceiving it as having agency. If a system is

perceived as separate, what is necessary for it to be perceived as having agency–as a true collaborator, and

not just an additional, separate technological element in the performance? Furthermore, how can a human

designing a system come to be “surprised” by agency in a system they themselves are designing? How

might machine learning as a source of contingency be different (and preferable to?) randomness or analog

glitch?

2 Recognizing the Collaborator: Emergent Agency in Complex

Systems

The following section sets aside the more simple concept of AI assistant to analyze the role of AI

collaborator in music technology systems. As seen in section 1.1, a system is understood as a collaborator

when it is perceived as separate from a human performer and creates a perception of agency. The following

section analyzes how this perception arises by first clarifying an understanding of “AI system” in this

context, then describing an example in which the perception of agency arises.

12

2.1 What do we mean when we say Artificial Intelligence?: Towards a

Phenomenological Definition

In a recent panel titled “Good Old Fashioned Artificial Intelligence” at the 2020 inSonic conference, the

topic quickly turned to the question of what is meant by “artificial intelligence”, particularly in the context

of creative music making. George Lewis posed the problem well, saying, “It’s funny because this whole

thing about intelligence, you know, trying to define it is going to be a problem, so you find that defining

artificial intelligence is just as problematic and difficult as defining any other kind of intelligence. I mean,

there have been many definitions, none of them completely satisfactory”. (Karlsruhe 2020) The moderator,

Lutger Brümmer, frames the question for the panel as a consideration of whether mathematical models

producing complex systems is considered AI, asking, “We forget the context of early AI, it was something

like cybernetics, markov chains, different ways how to use randomness, and there were rule based

systems,...or there were systems like cellular automata, Lindenmayer systems, fractal systems, and those

were, we would today see as part of the generation of complex behavior...So there is something with these

mathematical models which create at least complex behavior, now it’s a question of if that is–if we could

consider this as artificial intelligence or if we should say it’s something else.” (Karlsruhe 2020) Rather than

outlining technological categorizations, the panelists’ responses about identifying AI all focus on the

perception of intention or agency in collaborative technology. Lewis described that, while performing with

Voyager “people have to feel that they can get the machine’s attention, that they can dialog with it, that

it, quote, ‘understands’ them somehow, and if that’s AI, I’m prepared to go with that as one potential

method of thinking about AI, I mean it’s not the lisp, prologue, scheme kind of AI, but it is a kind of AI.”

(Karlsruhe 2020) Palle Dahlstadt adds, “I really think...it depends on what role you give to it, if there’s a

certain kind of complexity–and that threshold is really quite low–it can be perceived as an agent that

actually plays with you.” (Karlsruhe 2020) He goes on to explain how low this threshold can be, stating

that, “even such relatively simple systems that contain complex internal states and latency and feedback,

they start to behave like if they, it’s like playing with another musician because it’s so complex, and that

took me a while to realize that these instruments have the same role as when I actually involve much more

complex algorithms”. (Karlsruhe 2020)

These descriptions demonstrate that for practitioners who have been working with AI in musical

creativity for decades, the identification of what is an “intelligent” system is not determined by a category

of algorithm or even a degree of complexity, but rather by a perception or attribution of agency in a

technological system. The panel also reveals that a common strategy for inducing this perception is the use

13

of a complex system, that of which may involve a machine learning algorithm. This view is nicely

summarized by Lewis at the end of his article about Voyager titled Too Many Notes, saying, “Rather than

asking if computers can be creative and intelligent–those qualities, again, that we seek in our mates, or at

least in a good blind date–Voyager asks us where our own creativity and intelligence might lie–not ‘How do

we create intelligence?’ but ‘How do we find it?”’ (Lewis 2000) Lewis’ suggestion places the onus for

identifying artificial intelligence, not in the contents of the machine, but in the perception of the user.

2.2 The Pursuit of Contingency, or, the Desire for a Collaborator

Collaboration with Humans The creative invigoration that comes from working with contingent

systems similarly operates in collaborative group improvisation. Humans (i.e., living intelligent

collaborative systems) are capable of responding to other humans in ways that can act as both

collaborators and assistants. Although the perception of intention and agency is seemingly less ambiguous,

a human could respond to another in ways that “extend” and/or “elaborate” the other’s intentions, acting

as an assistant. The fact that a human could produce the same results as a AI assistant, and yet one would

not perceive that performance as a “solo”, reinforces the distinction that the perception of something or

someone as a collaborator is not simply predicated on the difference of the sounds produced but by the

perceiver’s attribution of agency to the “system” producing the sounds. Humans will be more likely to

attribute agency to humans than to technologies.

More often, humans act as collaborators creating moving sonic forms exhibiting intentions distinct

from those of their human collaborators. In their ethnography of improvisers from a human-computer

interaction (HCI) perspective, Kang, Jackson, and Sengers describe the dynamic of improvisational

contingency, saying, “Several interviewees described the ‘tension’ stemming from the uncertainty of

improvisational process – the ever-present threat of unwanted dissonance and breakdown – as a source of

both fragility and potential failure, but also energy and creativity.” (Kang, Jackson, and Sengers 2018) As

will be seen by examples in Section 3, I have often employed AI collaborators alongside improvising human

collaborators as a strategy for increasing the creative energy obtained from contingency.

Kang, Jackson, and Sengers describe the pursuit of this contingency using “coder” terminology,

saying, “musicians and artists may seek to exploit or create uncertainty as a mechanism of discovery and

expression, making breakdown in effect a ‘feature’ rather than a ‘bug’.” (Kang, Jackson, and Sengers 2018,

emphasis mine) The creative energy derived from the “fragility and potential failure” in group

improvisation can be similarly exploited in electronic musicians’ use of fragile and potentially failing

14

technology. When describing her improvisational practice, New Renaissance Artist The Honourable

Elizabeth A. Baker explains,

the thing that I focus on in my improvisation when I’m performing, [is] having something that
can subvert my improvisation and cause me to think in a new way. So on tour, I always have
one piece of gear that will probably blow up or I make a new configuration at the beginning of a
show that will probably go wrong and I specifically do this so that when it goes wrong and I’m
shocked out of whatever thing I normally would be doing, I have to think on my feet, and I also
have to think on my feet in front of a bunch of humans, so it means that I don’t have the luxury
of saying, “Oh yeah Elizabeth, this is what you do when this problem goes wrong.” It’s like,
“Oh! This thing is happening. People are watching me. Make it look like you know what you’re
doing, but now I can’t use this thing the way I wanted to use this thing and this has caused all
these other problems over here, so what am I going to do now?” So that’s my current
improvisational take and it’s more based on cognitive behavior and what can I do?...I always try
to say to myself, “Ok, well what piece of gear in my studio is the least reliable right now?”
What can I throw in here that is going to possibly cause a–sometimes it doesn’t cause a problem,
but a lot of times it does and I find the joy of de-escalating the bomb. (Baker 2020)

Collaboration with non-Humans For electronic musicians, the desirable moments of “surprise” while

using technology (which then allows for those creative suggestions to be pursued or not) has often been

rooted in the imprecision of analog systems. Harry Collins and Trevor Pinch write of early analog

synthesizers, that they,

used transistors and were very imprecise. They were notoriously difficult to control. Musicians
would talk about getting an incredible sound at night in the studio only to return to the
instrument the next morning to find they couldn’t reproduce it. This imprecision was a source of
constant delight for some musicians. Famously the legendary space jazz performer Sun Ra took
one of the Moog’s first synthesizers and he broke every module on the instrument, but the sound
it made was “fabulous.” The instrument worked better “broken”! (Collins and Pinch 2006)

In their example, Sun Ra gladly breaks the synthesizer to make it even less predictable, and therefore a

more desirable instrument. The desire for unpredictability, or systems “difficult to control”, that Sun Ra

exhibits can also be seen in contemporary artists working with artificial intelligence. Laetitia Sonami–a

sound artist, performer, and researcher based in Oakland, CA–says of her work with machine learning,

“...in a way, you don’t want the instrument to perform like a well-trained circus, you kind of want it to be

a little wild, and you want to adapt to it somehow, like riding a bull...I think the machine learning allowed

more of this”. (CeReNeM 2019)

Rebecca Fiebrink, the creator of Wekinator, gives a compelling analysis of how a machine learning

system, as opposed to heuristic approaches, changes the nature of these “bugs” a creator encounters,

transforming them from problems into creative opportunities.

15

One of the great things about using machine learning as opposed to coding, as I mentioned it’s
faster, but also the kinds of mistakes it makes are different. If you make a mistake while you’re
writing code, often you’re going to get a compiler error or...silence, or you get, you know, a
filter blowing up. With machine learning the way that a lot of these systems are configured, if it
gives you something unexpected it’s often still going to be in that parameter space and it might
be a sound that you’ve never heard before, might be a relationship between your input and
output that you’d never thought of, but it’s going to do something and that’s often just more
creatively useful than having nothing happen and that can lead you to experiment further.
(CeReNeM 2019)

Fiebrinks’s description makes a strong argument for why a creator interested in employing contingent

technologies as a collaborator would want to use machine learning: the exercise of trial and error (central

to creative practice) is primed for creative surprise–when using AI systems, the “error” is designed to offer

new ideas (rather than a crash).

Furthermore, in an interesting turn on the control vs. contingency paradigm of Collins and Pinch,

Laetitia Sonami describes using machine learning to control the degree of contingency in her instrument.

The unpredictability...depends on how “wide” the machine learning is. If I feed the system
training examples whose sounds encompass wide changes based on how I touch the springs, the
trained models will move through all these points in unpredictable ways as the springs settle to a
resting place. If I give it training examples with narrower changes, the sound will just oscillate
slightly as I move the springs. I can thus easily scale the instrument between predictable and
unpredictable results by changing how I train. I refer to these variations as the “synthesis
terrain”...This “predictability index” is very easily modified and unique to ML. (Fiebrink and
Sonami 2020)

Even with this control over contingency, Sonami still chooses to inject the imprecision of analog

mechanisms into her instrument, adding, “I was looking for more complex inputs and opted for a partially

chaotic system which would ‘fight’ the intention of ML and not learn (!). I ultimately used thin springs

attached to audio pickups. These would allow for movement of the springs to continue after having been

activated by my hands.” (Fiebrink and Sonami 2020)

The advantages of contingency in the creative process are recognized by these artists from

different angles, including in the use of machine learning. The next section explores how a complex system

comes to be perceived as agential by an artist, thereby allowing it to be engaged with as a collaborator.

2.2.1 Emergence of Agency in Complex Systems, or, Recognizing the Collaborator

Perceiving Agency... In order to examine the emergence of agency from a complex system, I will

compare international sound artist Richard Devine’s use of modular synthesizer systems with Deniz Peters

experiments using motion tracking of dancers to control sound (Peters 2013). Richard Devine describes

16

using modular synthesizer systems as,

Things would happen unexpectedly. It was almost like it had its own personality. It was like a
living organism that sort of does its own thing. These circuits would come to life. Even the little
slightest thing would cause it to change and be different. I don’t know how to explain it. I call it
the analog voodoo effect, you know? To a lot of people it’s kind of hard to explain unless you
have experience with an analog synthesizer. You get this feeling that it has this kind of like, it’s
almost like it has its own personality to it. (I Dream of Wires 2013)

By saying that his modular system “has its own personality,” “It was like a living organism,” and other

anthropomorphic phrases, Devine is expressing his perception of intentionality and agency in his modular

system. The event that seems to spark this perception is when “Things would happen unexpectedly.” This

moment of “surprise”, similarly expressed by other artists, is also described by Deniz Peters in his study

using motion tracking with dancers (Peters 2013). When the dancers would experience “motion tracking

glitches”, “a foreign agency would seem to gain presence” (Peters 2013). Peters says, “the instrument [(the

motion tracking software)] may...turn into [an] agency, particularly if its response is less predictable than

that of a static object” (Peters 2013, 159). Unpredictability again appears as a catalyst for perceiving

agency.

...as Glitch? or Goal Similar to Peters, a lack of predictability is what gives rise to Devine’s perception

of agency in his modular synthesizer. The difference is that Devine does not describe it as a “glitch”.

When he describes his experience, it sounds as though he is describing a content generating collaborator:

I’ve been doing a lot of work with analog modular stuff. I work very much the same way in that
world too, just kind of start from nothing and then patch up and see what happens, and kind of
create this little environment that can generate, sometimes generate things for you that are
unexpected. It may give you something that you were looking for, it may give you something
that you weren’t even looking for that’s even cooler than what you were trying to come up with,
or you know it might be something that’s completely useless. You just never know and that’s
what I love about it you know it’s just kind of throwing the dice out and seeing what happens.
(SweetwaterSound 2014)

Devine’s description makes the moment of “surprise” a goal (i.e., desirable and/or planned) rather than a

“glitch” (i.e., undesirable and/or unplanned). This comparison of goal and “glitch” reflects Fiebrink’s

description of how “bugs” (i.e., glitches) are different when using AI, recasting them as goals to be pursued

for their creative potential. Similarly, the way Devine describes selecting preferred outputs from his

synthesizer system collaborator echoes visual artist Klingemann’s description of choosing from thousands of

images created by his neural network collaborator.

17

In order to experience a moment of surprise from a system (goal or “glitch”), one must have an

established facility with it, such that one’s interactions can create predictable outcomes. When one’s

interactions then produce an unpredictable outcome, one can be surprised. Peters describes this necessary

facility saying, “the instrumental action becomes transparent, disappearing as a resistance to our sonic

intentions. The instrument seems to become part of one’s body. This transparency is a facet of the

technical mastery attributed to virtuosity” (Peters 2013). Devine’s prolific use of modular synthesizer

systems establishes him as a virtuosic user, to whom we can ascribe this facility. Peters’ description of the

technology as being “part of one’s body” establishes it as being an assistant to the performer, as it is

synchronized with and extending or elaborating the dancers’ intentions (the intended use) and therefore

only when it “glitches” does it take on a sense of agency. Here one observes the different descriptions of the

“surprise” moments corresponding to different intended uses of the technology. When an assistant does

something unexpected, it is a glitch, while collaborators are intended to do something unexpected.

2.2.2 Separation of the System from the User

During the moment of surprise for Devine and the dancers, the transparency of the instrument and the

instrument as an extension of the body, as Peters calls it (Peters 2013), gives way to a realization of the

technology as separate from the body and therefore capable of having independent agency. This realization

may arrive as a result of the system’s output moving away from the origin on Pluta’s source bonding

continuum. While Peters’ dancers experience this surprise via unplanned “glitch”, Devine is able to achieve

his goal of surprise in spite of his virtuosity. I say “in spite of” because one may suppose that a “virtuosic”

user performing virtuosic execution would be in control at all times (and therefore not-surprisable), as one

might consider the execution by a virtuosic violinist. A question then, is how does Devine, a virtuosic user

of these systems, achieve his “goal” of surprising himself? How is a virtuosic user of this instrument able to

create a transition from control to contingency, solo to duet, assistant to collaborator, thereby creating an

agent with which to collaborate?

2.2.3 The Role of Complexity

The agency of a complex system is an emergent property of its complexity. Agency emerges when the

system becomes too complex for the user to keep track of all the interconnections and relations necessary

to precisely predict the outputs of the system. Furthermore, creating this agency is a goal of using the

system, as one can then employ that agent as a collaborative partner in the creation of music. Once Devine

18

constructs the modular system to be sufficiently complex to perceive agency he can then employ that agent

as a creative collaborator.

When beginning to create a modular synthesizer patch, Devine says that he “just kind of start[s]

from nothing and then patch[es] up and see[s] what happens” (SweetwaterSound 2014). Early in this

process, when there are few interconnections, Devine, a virtuosic user, would be able to provide Leman’s

third person descriptions of the sound being produced. Given a particular set of connections he would be

able to account for the sonic results using objective, measurable descriptions such as, for example, “the

square wave oscillator is being filtered by the resonant low pass filter, the cutoff frequency of which is being

modulated by a triangle wave LFO.” Descriptions such as this are objective enough to recreate this sound

in the future or by someone else. Using third person descriptions at this stage points towards the modular

system currently being an assistant2–it is not offering surprise, only extending or elaborating (i.e.,

sonifying) the intentions of the user.

As one works with a patch, the complexity of it tends to grow, ultimately to the point where one,

including virtuosic users such as Devine, are no longer able to keep track of all the interconnections

contributing to the resulting sound. At this level of complexity, one is no longer able to readily provide a

third person, objective, reproducible description of the system. Instead, one starts using subjective, first

person descriptions that, as Leman says, “draw upon interpretations of intentions attributed to music”

(Leman 2008). For example, Devine uses phrases such as, “a living organism that sort of does it’s own

thing,” and “These circuits would come to life” (I Dream of Wires 2013). This is the first step in the

process by which agency emerges from complexity in modular synthesizer systems. Devine achieves his goal

by pursuing complexity to the point where he is surprised by the sonic results, indicated by the use of first

person descriptions.

It is important to note that although a user like Devine becomes unable to keep track of all the

interconnections of a system, he does not loose track of the system itself. One is still able to understand

what the system is doing (e.g., making frequency modulation sounds) and how it is doing it (passing

around electrons), but is unable to predict other parameters such as when and which different variations of

sound might occur.

2For demonstration purposes, describing this instrument as an assistant is useful, however, it doesn’t fully agree with my
definition of AI assistant in that the task it is performing is not very complex and does not involve data processing.

19

2.2.4 Mirroring, or, Recognizing Oneself in the Collaborator

The second step in the emergence of agency from a complex system is described by Leman, saying,

“Attribution of intentionality is likely to occur on the basis of mirroring, that is on the basis of a

simulation of the perceived action in the subject’s own action. Actions of others are understood as

intended actions because the subject can simulate them and understand them as its own intended actions.”

(Leman 2008) He clarifies that, “This intentionality can be attributed to subjects as well as to objects (or,

rather, events).” (Leman 2008) Leman explains that it is not simply enough for one to perceive a system

making separate sounds that surprise the user, the perceived intentionality of the system’s sounds must

also resonate with the users sense of their own intentions. Leman describes the perception of agency as an

emergent property, stating, “Through motor resonances, the complexities of the physical world are related

to our personal experiences. Intentionality, therefore, can be conceived of as an emerging effect of this

communicative resonance.” (Leman 2008, 102) Regarding modular synthesizers or AI music systems, in

order to perceive the system as an agential collaborator it must be perceived as a separate, but similar,

actor. The actions (i.e., sounds) it makes when it surprises the user are recognizable as sounds that the

user could make and might desire to make using such a system.

2.3 Conclusion

According to Leman, moving sonic forms that are perceived as separate from a human performer, yet

exhibit behavior that mirrors one’s own intentions can be perceived as agential. These perceptions of

agency point toward a phenomenological, rather than categorical or technical, definition of AI

collaborators. Electronic musicians have always be interested in employing contingency, such as these

agents, as collaborators in their creative practice. This is often achieved by creating technological systems

complex enough to create moving sonic forms that are surprising to the the system designer and/or user.

3 Practice-based Research in AI for Music Making

All of the code for these projects can be found in corresponding Appendices.

3.1 Using Audio Descriptors

Much of the research that follows in this section is based on datasets created by audio analysis. In order to

create these analyses, the audio is often first sliced into short segments either all consecutive and equal in

20

Index(es) Audio Descriptors
0-39 40 MFCCs
40 Spectral Centroid (Hz)
41 Spectral Spread (Hz)
42 Spectral Skewness (normalized) as a Ratio
43 Spectral Kurtosis (normalized) as a Ratio
44 Spectral Rolloff (Hz)
45 Spectral Flatness (dB)
46 Spectral Crest (dB)
47 Frequency (Hz)
48 Frequency Confidence (0-1)
49 Loudness (dB)
50 True Peak (dB)
51 Zero Crossing (Hz)
52 Sensory Dissonance (0-1)
53-92 40 Mel Bands (in amplitude)
93-104 Chromagram (12 TET)

Figure 3: List of all 105 audio descriptors extracted with author’s SynthMIRNRT SuperCollider Class

length (usually between 20 - 100 milliseconds) or through analysis, making slices at loudness onsets or

novel changes in spectral shape. These slices are then analyzed with a fast fourier transform (FFT) and

descriptors are calculated from the spectra (some descriptors such as RMS or zero crossing do not require

an FFT). Some of the analysis descriptors used are seen in Figure 3, most of which are extracted using

tools from the FluCoMa Project (Tremblay et al. 2019). Some code for this extraction can be seen in

Appendix A.

3.2 Artificial Intelligence as Assistant

Returning to the idea of assistant, the following two examples are uses of neural networks as machine

learning assistants.

3.2.1 Timbral Classification for Sound-to-Light Parameter Mapping

In multimedia performance the synchronization and coordination of different media is often an aesthetic

goal. If the multimedia elements (e.g., sound, light, video, etc.) are fixed before the performance (as “fixed

media”), the relation between them can be pre-composed, not requiring real-time reactivity.3 If the

components are not fixed (such as in improvisation), then media elements must be manipulated in

real-time in some way. In the case of performance with audio and lights, one undesirable strategy would be

to have a separate control interface for both sound and lights. In order to create the perception that the

3I used this strategy to compose tap, for percussion trio, tape, lights, and video: https://vimeo.com/339268455

21

https://vimeo.com/339268455

sound and lights are related, the performer would have to manipulate the sound and lighting instruments

simultaneously and with similar behavior. A more common strategy is to create real-time “audio-reactive”

media elements that change media parameters in response to changes in sound. Real-time audio analysis

creates streams of data that can then be mapped onto multimedia parameters such as color, brightness, or

event triggers.

My composition feed is a structured improvisation for bassoon and multimedia that uses lighting

instruments reacting in real-time to sound generated by my improvised no-input mixer performance. My

initial attempt at this live reactivity was a matrix-based scaling and summing design4 that mapped audio

analysis descriptors to lighting parameters (such as color and brightness). After two performances with this

system in October 2018 and April 2019, I decided that the sound-to-light mapping scheme was not as

audio-visually compelling as desired. The visual activity of the lights did not match the clarity of the sonic

changes or the distinctness of the sonic spaces created by the no-input mixer because the linearity of the

mapping system was not able to strongly portray the non-linear complexity of the no-input mixer’s sonic

properties through the lights.

The solution I chose to implement was a neural network used to classify, in real-time, which sonic

space the no-input mixer was currently sounding. The non-linear property of neural networks (created by,

in this case, the sigmoid activation function in the hidden layers) is more capable of representing the

complexity of the no-input mixer’s sound. I chose to not pursue a heuristics-based classification algorithm

because (1) determining the best parameters would be very tedious and time consuming (that is what a

neural network does for you!) and (2) if in the future I chose to use a different sound source, the system

could easily adapt by simply creating a new training set.

The categorical differentiation provided by this neural network more accurately reflects the

experience of hearing the no-input mixer switch between different sonic categories. In order to exhibit

these sonic categories clearly with the lights, each category was assigned a different set of audio

analysis-to-lighting parameter mappings (such as, an increase in volume creates an increase in brightness).

When the neural network identifies a change in sonic space it triggers a visual change—the parameter

mapping scheme is switched to the one prescribed by the new sonic space. Figure 4 shows how these

system components work together.

In order to create the training data for supervised learning, I recorded audio from all four sonic

spaces of the no-input mixer (as performed and identified by me: low thuds, high squeal, distorted noise,

4Similar to (Brandtsegg, Saue, and Johansen 2011)

22

Figure 4: Data flow diagram of sound-to-light mapping system for feed.

and quite sustained noise). From each category I extracted audio descriptor vectors derived from

consecutive 30 millisecond windows5 and paired each analysis vector with its one-hot encoded category

vector. A one-hot encoding is a vector the length of the number of categories the neural network is learning

to identify, with zeros in all places except at the category-identifying index, which is represented by a one.

The neural network used was one I created for this composition that trains and predicts on the client side

of SuperCollider. The audio-visual correspondence that this new system created was much more

compelling. Retaining the strategy of mapping analysis parameters to lighting parameters (from the first

iteration of the work), maintains the gestural nature of the lights’ audio reactivity, while using the

categorization of the neural network to switch between different mappings strengthens the visual

correlation of the fast-category-switching sonic experience. I have since employed this system it in multiple

performances, such as shadow.6

5This is the same window size to be used in the real-time analysis, which creates an update frequency, or visual frame rate,
for the lights of about 33 Hz, which is well above the commonly used framerate between 24 and 30 frames per second for video.

6https://www.tedmooremusic.com/shadow.html

23

https://www.tedmooremusic.com/shadow.html

Using a neural network in this way is a clear example of using artificial intelligence as an

assistant. To use the undesirable example from above, the performer could play the no-input mixer and

each time they identify (or execute) a change in sonic space, they could reach over to the lighting controls

and manually switch the mapping scheme. Instead of this strategy, I have chosen to have a neural network

assist me by identifying changes in sonic space and switching the mapping scheme for me. I am not asking

the neural network to perform any creative task or to engage with me as a performative collaborator, but

simply to assist with a task—one that I could do myself, but instead choose to focus on my sonic

performance. The system is not designed to be complex enough to create “surprise” but instead is intended

to behave predictably.

The idea of artificial intelligence as “assistant” corresponds to the paradigm of supervised learning

because supervised learning requires that a human labels all the data (in this case categorizes the sounds)

before training. The human must already know the “correct” answers that the algorithm is being asked to

learn, and once the learning has happened, the human can rely on the algorithm to perform that task for

them, similar to how a human supervisor may engage a human assistant.

3.2.2 Frequency Modulation Resynthesis

The “n-to-m” mapping paradigm is a commonly used strategy for synthesis parameter control (Hunt and

Wanderley 2002), especially when the number of control parameters are more than one performer is able to

manipulate at one time or the synthesis parameters are being controlled by atypical information streams

(such as motion detectors (Peters 2013) or photoresistors (Fieldsteel 2018)). Often these mappings are

done with matrix-based linear scaling and/or weighted sums (Brandtsegg, Saue, and Johansen 2011).

Using a neural network with hidden layers and non-linear activation functions allows for more complex

relationships to be established, but also allows for mappings to be learned from training data, rather than

chosen by a designer.

For this study, I use a neural network to create an n-to-m mapping from audio analysis

descriptors to synthesis parameters for frequency modulation (FM) (Chowning 1973) using regression. FM

was chosen because it is a commonly employed synthesis algorithm and is capable of producing a large

variety of timbres and morphologies using very few input parameters. The neural network receives audio

analysis descriptors as input, from which the network predicts the FM synthesis parameters that most

closely recreates the input audio signal spectrum. Because the prediction and synthesis happen nearly

instantaneously and the limitations of FM make it very likely not able to precisely reproduce the input

24

sound, the result resembles a real-time distortion effect on the input signal.

The success of this effect depends on adjusting two main hyperparameters: (1) what points to use

in the dataset for training and (2) which audio descriptors to use as inputs to the neural network. One

testing harness was created for examining both, which was done iteratively by adjusting each

hyperparameter separately.

The most challenging decision to make, which also took the longest to solve, was what points to

use in the dataset for training. Each data point needs to consist of an output vector of FM synthesis

parameters (y) (carrier frequency, modulating frequency, and index of modulation) paired with an input

vector of audio descriptors (x) derived from the FM audio signal created by the parameters in the output

vector. Supervised training with this dataset allows the neural network to learn to predict what synthesis

parameters were used to create a sound (based on that sound’s analysis descriptors).

To create the training set, I initially chose to create 30 steps per FM synthesis parameter

(303 = 27000 data points in total). The carrier and modulation frequencies were scaled exponentially from

20 to 20,000 hertz (to match human perception of pitch and cover the range of human hearing) and the

index of modulation, which is essentially a coefficient in the algorithm, ranged from 0 to 20 (a commonly

used range). Then, using SuperCollider’s non-real-time functionality, I iterated over each data point and

used these parameters to synthesize a signal from which audio descriptors were extracted. In order to

create a fluid workflow for later analysis I chose to extract 105 descriptors (Figure 3) from this analysis, as

I can then later examine which work best for training.

My criteria for selecting which audio analysis descriptors would create the best trained neural

network were (1) minimizing error with cross validation and, more importantly, (2) a more compelling

sonic result. The four analysis vectors I tested were (1) 39 MFCC values7, (2) 40 Mel Bands, (3) 92 of the

105 analysis parameters (Figure 3, all except the Chromagram), and (4) seven spectral descriptors

(centroid, spread, skewness, kurtosis, rolloff, flatness, and crest). Although none of these were yet as

successful as I desired, I found that the seven spectral descriptors was the best.

My first attempt to improve performance was to use a larger dataset that was less evenly spaced

throughout each parameter. Poisson disc sampling creates a dataset that consists of randomly placed

points evenly distributed throughout the entire parameter space (Bridson 2007). Using this algorithm I

created a dataset of 37,542 points in normalized space which was then transformed using the same scalers

as before to create a complete training set via FM synthesis and audio descriptor analysis. Although this

7I used an analysis of 40 MFCC values but ignored the first one as is commonly done, because it essentially represents
amplitude.

25

solution did not improve or worsen results, I continued using this larger dataset for training with the

understanding that more data points could yield more accuracy.

After analyzing the properties of my dataset, I realized that the neural network was not

converging well because the training data had many points that were likely confusing it. Many of the FM

parameter combinations create spectra with negative frequency sidebands that “fold” around 0 Hz back

into the positive frequency domain (Dodge and Jerse 1997). Similarly, many of the spectra would create

aliasing in the upper register.8 These phenomena will create spectra (and resulting descriptor vectors (x))

that may be similar to other spectra synthesized from very different FM parameters (y). A neural network

that is shown very similar inputs (x) which are paired with diverse outputs (y) may become confused as it

tries to regress towards different outputs from a similar input space. In Figures 5 and 6 one can see two

examples of my analysis of the training set. Looking at the top graph of each, the more that one color is

spread out in the two dimensional space, the harder it may be for the neural network to learn to predict a

certain output (location in 2D) from its input (color) because similar inputs (colors) point to multiple

output spaces (2D space).9 In order to fix this problem, I iterated over the dataset, removing any data

points that did not meet the following constraints:

1. carrier frequency < 5,000 Hz (more common range and should minimize aliasing)

2. modulating frequency < 2,500 Hz (more common range and should minimize aliasing)

3. ((index + 1) ∗ modulating frequency) < carrier frequency (should minimize/eliminate negative
frequencies folding around zero) The heuristic of using the idndex of modulation + 1 is taken from
(Dodge and Jerse 1997).

Filtering the data for these criteria left 5,685 points. Even though this dataset had fewer points,

the resulting sound was much more convincing. The pitch and timbre of the synthesizer was

phenomenologically more similar to the input that previous attempts. The neural network and FM

synthesis were able to recreate the pitch, noisiness, and morphologies of the input sound, making it a useful

“distortion” type FX of an incoming signal.10 Trying different neural network architectures revealed that

one hidden layer of six neurons created the lowest loss.11

AI and creativity researcher Rebecca Fiebrink explains how data can be used as a control

8The synthesis was done at a samplerate of 44.1 kHz.
9Although these few dimensions do not fully visualize the problem, these charts are used to visually consider the concept,

as a metaphor for the larger conceptual issue being faced.
10Some representative results can be heard here: https://drive.google.com/drive/folders/

1H51GyG6eJH5QTXzLXguOI5lmS5H978mj?usp=sharing
11The neural network framework that was used is from the FluCoMa Project. (Tremblay et al. 2019, https://github.com/

flucoma) Activation function of hidden layers = sigmoid; Activation of output layer = identity; Number of epochs trained =
31,800; Final loss = 0.0499; All input and output data were normalized for training and testing.

26

https://drive.google.com/drive/folders/1H51GyG6eJH5QTXzLXguOI5lmS5H978mj?usp=sharing
https://drive.google.com/drive/folders/1H51GyG6eJH5QTXzLXguOI5lmS5H978mj?usp=sharing
https://github.com/flucoma
https://github.com/flucoma

Figure 5: Spectral spread values (color) for each data point represented by its index (x axis) and modulating
frequency (y axis). Top graph shows before filtering data. Bottom plot shows after filtering data.

interface to tell the computer what to do, saying,

In most machine learning classes that you might take, we talk about data as ground truth. Data
is something you gather from the world and you try to make a really accurate model of that data
because probably you don’t understand as a human how the stock market works but you want to
predict it more accurately or you don’t understand how a complicated set of medical test work
together and you want to predict more accurately whether some treatment is appropriate for
patient. But here we’re not using data in that way. Data is actually instead an interface for
somebody to communicate to a computer. I’m communicating through these examples I’m
giving, what kinds of movements I want to make and what kinds of sounds I want to be paired

27

Figure 6: Frequency values (color) for each data point represented by its carrier frequency (x axis) and
modulating frequency (y axis). Top graph shows before filtering data. Bottom plot shows after filtering
data.

with those movements. It might be fairly arbitrary, or not. It might be subjective, but in either
case, I’m, sort of, the expert. I’m using data instead of code to tell the computer what I want it
to do. (CeReNeM 2019)

By not including data points that would create aliasing or negative frequencies folding around zero I am

using my dataset to make clear to the neural network that I do not want it to create FM parameters that

would create aliasing or negative frequencies folding around zero.

28

3.3 Artificial Intelligence as Collaborator

3.3.1 The harmonic series strikes again: emergent tonality in feedback resonant tubes

My composition hollow, includes large PVC tubes that are used in a complex audio feedback system. The

three tubes (all four inches in diameter) are cut to lengths of 10 feet, 8.4 feet, and 7.5 feet in order to

achieve resonances at 55.8 Hz (≈ A1), 66.3 Hz (≈ C2), and 74.4 Hz (≈ D2) respectively. Each can be

controlled through digital processes to direct the system’s resonance toward particular frequencies or,

alternatively, allowed to behave autonomously, being regulated by negative feedback mechanisms in the

feedback signal path. In each case, the tubes act as filters, creating resonance at frequencies in a harmonic

series, the fundamental of which is based on the length of the tube. As a whole system, the three tubes can

be operate in parallel as three different feedback systems, or in series, creating one large feedback system

that circulates through all of them.

Building up the Complexity After initially discovering with one tube the beautiful tones that sound

when a feedback loop is created, I then chose to add two more tubes of different lengths to create a richer

harmonic palate. Once the three feedback systems were sounding, a clear next experiment was to hear the

tubes in series, which, by increasing the complexity of the system, provided some surprising results

including a distinct A Mixolydian-type scale. Continuing to experiment with this instrument and adding

feedback saxophone in performance increased the complexity of the system, which I began to perceive as an

agent, offering collaborative and creative input to the rehearsals and performance. The performative and

musical content that this collaborator offers are the sequence of tones, harmonies, timbres, and gestures

that are created as the tubes interact with each other while in series. The goal of the following analysis is to

understand the emergent properties of this feedback system so that they may be further exploited and/or

so that future feedback system designs can begin from creative goals based on system criteria or heuristics.

Tube Controller Each tube has a microphone at one end and a speaker at the other (both placed

directly in front of and facing their respective openings). When the tubes are operating in parallel, the

sound that comes out of the speaker travels down the tube, is picked up by the microphone, amplified, and

sent back to the speaker, creating a feedback loop. Between the microphone and speaker, this signal goes

through SuperCollider to be processed by two compressors, a limiter, a tanh transfer function, and a

softclip transfer function to keep it from clipping or distorting unpleasantly. SuperCollider also enables the

performer two ways of manipulating the audio in the feedback path: Partial Mode and Modulation Mode

29

(Figure 7).

Figure 7: Feedback tube signal flow including control methods 1: Partial Mode & 2: Modulation Mode.

Partial Mode The first method of manipulation is with a bandpass filter, the center frequency of which

is only able to be positioned at resonant frequencies of the tube it is controlling (partials 1-10). The

performer can freely move the center frequency along a slider that “snaps” to these limited options (Figure

8). The rejection of other frequencies (and resonance of the filter) restricts the feedback from sounding

anywhere other than at the partial indicated, however, presence of the tube and multiple transductions

involved introduce some analog imprecision into the system, preventing it from resonating at precise

integer multiples of its fundamental. Experientially, however, the sound of an overtone series is still very

strong. Figure 912 shows a histogram of each tubes’ sounding frequencies (while the tubes are operating in

parallel). Dotted lines indicate partials for each tube by color. Throughout this analysis the tubes are

represented by the following colors: A fundamental: red, C fundamental: green, D fundamental: blue.

12The following analyses are created from pitch tracking information analyzed from each tube’s microphone.

30

Figure 8: Screenshot of “tube controller” interface for hollow created in the iPad app Lemur.

31

Figure 9: Histograms of tubes’ sounding frequencies when operating independently.

32

Modulation Mode The second method of manipulating a tube’s feedback audio is with a combination

of a modulating delay line and a spectral resonance suppressor, which allows the tube to behave more

autonomously. The modulating delay line (sine wave low-frequency oscillator at 0.01 Hz with a depth of

0.06 seconds13) acts as a pitch shifter, “pushing” the signal way from its current resonance. The spectral

resonance suppressor uses an FFT analysis14 to identify spectral peaks surpassing a given threshold and

responds by attenuating the peak band with a narrow bell EQ (q = 20) that fades from 0 to -2 dB over 4

seconds. Although -2 dB seems minimal, it continuously adds these bell EQs until the spectral peak is

below the threshold. Also, it adds the bell EQ at whatever frequency the phase vocoder is currently

reporting for the bin with the maximum magnitude, therefore even if the peak shifts in frequency but stays

within the same bin the suppressor will track it. Each bell EQ that is added stays in place for a random

length between 14 and 17 seconds. This negative feedback system counteracts the positive feedback of

audio amplification, keeping the system from continuously growing in volume, but also preventing it from

resting on one resonant frequency for very long.

Performance In the opening of hollow, the tubes are in parallel, used in Partial Mode, creating three

independent voices used to create three part harmonies with rich beating patterns (Figure 10). After

developing these sounds from their lowest to highest register, I begin switching the tubes, one by one, into

Modulation Mode allowing the modulated delay line and resonance suppressor to act on the signal,

preventing it from remaining at any one partial for long. After letting these overtone series sound for a

while, I cross fade to the signal flow that connects the tubes in series (seen in Figure 11), now creating one

feedback loop, instead of three. As expected, histograms of the tubes’ analysis frequencies while in series

(Figure 12) are more similar to each other showing clear preferences for where, in frequency space, the

three-tube feedback system prefers to resonate. The sonic experience of these tubes while in series is a

slowly evolving soundscape that draws from tones in an A Mixolydian scale with an added C natural in the

lower register. Although only one frequency is most prevalent at any given moment, other pitches from this

scale can be heard at various times creating a sense of harmony, especially during moments of transition

from one salient frequency to the next.

13Upon reflection, I am not sure this delay line would have much of an effect. I do believe that the slight pitch shifting may
slow down the rapid increase in volume made by the system’s resonance. Unfortunately the tubes are inaccessible for further
testing.

144096 samples; hop size = 1024 samples; window = hanning

33

Figure 10: Plot of tube frequencies for opening of hollow.

34

Figure 11: Signal flow of tubes in series.

35

Figure 12: Histograms of the tubes’ analysis frequencies while in series.

36

Frequency Cycling Charting the three tubes’ frequencies though time (as seen in Figure 13) reveals

them moving mostly in concert with each other, as well as a clear periodicity in the occurrence of certain

frequencies. While this first seems like an indication of emergent behavior resulting from complex

interactions, I quickly realized that it is most likely caused by the chosen duration of the bell EQs in the

resonance suppressor. The cycle of frequencies seen in Figure 13 is about 20 seconds: just longer than the

range of each bell EQ (randomly between 14-17 seconds), accounting for a few seconds for the feedback to

build up in a register after the EQs are removed.

Figure 13: All three tubes frequencies though time, showing periodic repetition of certain frequencies.

Tube Interaction Zooming in on the tubes’ frequency plots displays more complex interactions. Figure

14 shows how a dip in the sounding frequency of the system is passed around the feedback loop through

each tube. At 8:08, all three tubes are around 325 Hz, then transition to about 275 Hz by 8:09.6. During

this descent, the tubes’ frequencies deviate from each other slightly, revealing a dip in frequency that cycles

through tubes: A, then C, then D.

37

Figure 14: Frequency changes in the three-tube feedback system being passed around the tubes.

The drastic and jittery deviations between partials seen in these graphs can be understood by

Figure 15, which plots a sonogram of the tube’s audio recording and overlayed with the pitch tracker line

analysis. This shows that the monophonic pitch tracker is responding to other frequencies present in the

tube, yet is mostly representative of the tubes’ (and system’s) strongest resonances. Aural perception of

the system reinforces the presence of this polyphony.

38

Figure 15: Sonogram of each tube with pitch tracker overlayed.

Figure 16 shows more complex interactions, including (1) how individual tubes can lead the

system to one of its own partials, “dragging” the other tubes to join, (2) interesting divergences where one

tube will resonate at a frequency very different from the others, and (3) transitional spaces where no clear

stability can be observed. Figure 17 shows (1) a moment where the A tube (red) stays steadily on its own

partial while the C (green) and D (blue) tubes seem to be “fighting” with each other for which harmonic

series to come to rest in and (2) a moment when the system transitions from the second partial of C (green

dotted line) to the third partial of A (red dotted line), however, the D tube (blue) seems to resist this

motion, attempting to remain at its second partial (blue dotted line) as the system passes by that

frequency.

39

Figure 16: More tube interactions.

40

Figure 17: More tube interactions.

41

Uncovering Battle Grounds The transitional moments and ensuing “fights” between tubes are the

most sonically compelling passages that arise in performance. By further understanding these moments in

particular, I hope explore their possibilities and perhaps identify strategies to induce them in other

feedback systems. Figures 18, 19, and 20 show two-dimensional histograms of the relation between two

tubes’ frequencies while in series. Each point is a moment in time indicating the simultaneous frequency of

the two tubes being represented. Bluer points represent more moments in time; a “taller” peak on the

histogram. These plots show where in frequency space the two tubes tend to be–more dense clusters

represent more time spent in that state. The diagonal line at y = x (or about 45◦) represents unisons,

where both tubes are at the same frequency. Diagonal lines fanning out from the unison line are integer

multiple relations, which would indicate that the tubes are not at the same frequency, but in harmonic

relation with each other.

Figure 18: 2D histogram of frequencies in A and C tubes.

42

Figure 19: 2D histogram of frequencies in C and D tubes. Gray circle represents the stable state seen in
Figures 24 and 25

43

Figure 20: 2D histogram of frequencies in D and A tubes.

44

From these plots, one can see that while the tubes are not in series (left side) each tube is

independent, mostly sounding its own partials, as expected. While the tubes are in series (right side),

however, the points, or “states,” are much more clustered around the unison line, as the system is one

feedback loop, sounding (mostly) one resonance. Also, there are clear clusters of states at points along the

unison line, indicating locations of stability (stable states, or homeostasis) that the system prefers to

resonate at. One can also see looping curves through the space, which can be assumed to be connected into

lines through time representing a transition from one stable state to another in which one tube resists

leaving its own partial, but eventually is “dragged along” to a stable state not in its harmonic series. For

example, the circled arc in Figure 20 shows the system transition from the A tube’s fourth partial (which is

also D tube’s third partial), to A tube’s fifth partial, however, the D tube clearly resists this motion

initially (the point is trying to maintain its x axis position, therefore the arc starts by moving up instead of

diagonal along the unison line). The resonance in the D tube eventually succumbs to the system’s

movement, allowing the x position of the point to move to the right, reconnecting with the unison line (the

tubes are again in unison) where it intersects the A tube’s fifth partial.

The harmonic content of the listening experience is reflected in the position of stable states, which

outline an A Mixolydian scale with an added C natural in the lower register. There is also a strong

subdominant presence in the tubes’ performance, created by the D tube. Comparing Figures 9 (histogram

of each tube’s sounding frequencies while in parallel) and 21 (histogram of all tubes combined while in

series), one sees that the scale of the three-tube feedback system is a combination of some partials from all

the tubes. It is important to notice however that although the unison line crosses all possible partials,

there are not point clusters at all crossings; there are some partials that the three-tube feedback system

does not come to rest at (i.e., resonate at).

45

Figure 21: Histogram of all three tubes’ (in series) frequency analyses combined.

In order to analyze how the resonance tendencies of the whole system relate to the different

harmonic series of the tubes, Figure 22 show the normalized distance of each tube’s sounding frequency

from its nearest partial (a value of 0.0 distance means it is at a partial in its harmonic series, 0.5 means it

is directly in between two of its partials). For any given point in time, this plot clearly shows which tubes

are resonating within their harmonic series (close to 0.0) and which tubes are not (close to 0.5). Figure 22

shows a moment that transitions from a stable state only near a C tube partial to a stable state only near

partials in the D and A harmonic series. This is easy to see in the bottom graph (the pitch of each tube) as

well as the top graph (each tube’s relative proximity to it’s nearest partial). Most stable states are at

frequencies that allow two of the tubes to resonate in their harmonic series (there are none that encompass

all three); two examples can be seen in Figure 23. While all these examples lie along the unison line, there

are some states in the system that seem to be stable, yet are distant from the unison line, for example the

same stable state is seen in Figures 24 and 25. The circled area in Figure 19 shows on the two-dimensional

histogram the cluster of points very distant from the unison line representing this stable state.

46

Figure 22: A transitional moment demonstrated by the distance of each tube’s sound frequency from its
nearest partial.

Figure 23: Two stable states, each of which is near a partial in two of the harmonic series.

47

Figure 24: A stable state distant from the unison line.

Figure 25: A stable state distant from the unison line.

48

The final plotting strategy used to understand this system shows clear “battle grounds” where the

tubes are “fighting” over which of the system’s stable states (most of which are in A Mixolydian) to settle

on. Figure 26 shows the relation of C tube’s (green dots) and D tube’s (blue dots) frequencies (y axis) in

relation to A tube’s frequencies (x axis) (red dots are the relation between A tube and A tube, therefore

always on the unison line). The large black dots on the unison line represent the stable states of the system

(as seen in Figure 21). One can again see that some partials of tubes are not included as stable states (such

as the fourth and fifth partials of D and fourth partial of C). More interestingly, one can see square-shaped

clusters of points that use adjacent stable states as the bottom-left and top-right vertices (those on the

unison line). Figure 27 shows larger square shapes created by non-adjacent stable states. These squares

show a lot of structured activity near these stable states as the system transitions between them. The

curved white line seen in Figure 27 (which is the same one in Figure 20 seen from a different angle), again

shows the D tube attempting to remain at its third partial on the y axis (pitch A), while the system moves

to the C# above it, eventually curving up and also arriving at C#. I refer to these squares as “battle

grounds” because they represent the pitch space in which the system is out of homeostasis as the three

tubes seemingly “battle” for the system to settle at a state that is within their harmonic series.

49

Figure 26: Frequency of C and D tubes in relation to A tube and appearance of “battle grounds.”

50

Figure 27: Zoomed in region of “battle grounds” revealing a larger battle ground created by the non-adjacent
stable states C natural and E natural

51

The “battle grounds” shown in Figures 26 and 27 can also be seen (without white boxes) in

Figures 28 and 29, as well as other seemingly non-arbitrary structural shapes further off the unison line.

Video representations of these plots, which more clearly demonstrate the “battles” as they occur through

time, can be viewed here.15

Figure 28: “Battle grounds” seen by comparing A and C tubes.

15https://drive.google.com/drive/folders/1vAHhJI5Jp32hrM_FucdQKCzSMwHouYGU?usp=sharing

52

https://drive.google.com/drive/folders/1vAHhJI5Jp32hrM_FucdQKCzSMwHouYGU?usp=sharing

Figure 29: “Battle grounds” seen by comparing A and D tubes.

Feedback Saxophone The saxophonist is also performing a feedback loop created by placing a small

lapel microphone in the neck of the instrument (the mouthpiece is removed). The sound transduced by this

microphone is amplified through the house speakers (not speakers used for the tubes) creating a feedback

loop that is responsive to the resonance of the saxophone body. Before performing with the whole

saxophone body, the microphone is first placed in only the neck, creating a much smaller tube for

resonance. Once the entire saxophone body is attached, the resonanting length of tube can be manipulated

by the keys, changing the pitch and offering performativity to the saxophonist. Figures 30 and 31 are

53

histograms of the resonance of each of these systems (as analyzed from the performance audio) which

shows more diversity of frequency content than any single tube, but also is clearly influenced by the tubes’

resonances–often sounding frequencies that are in in the tubes’ harmonic series.

Figure 30: Resonances histograms of saxopone neck (top) and full construction (bottom) as heard in hollow.

54

Figure 31: Resonance histogram of the saxopone (full construction) while the tubes are in series.

Analyzing the saxophone’s sounding frequency through time (seen in Figure 32) again reveals that

it is often resonating at frequencies found in the tubes’ overtone series. Taking a shorter excerpt one can

identify specific frequencies and their relation to specific tubes (Figure 33, this excerpt can be heard

here16). Comparing the frequency motion of the saxophone at this moment to that of the tubes (Figure 34)

reveals that pitch trackers of the saxophone and C tube are reporting the same frequency curve as both

transition from around 270 Hz to 220 Hz. Although one cannot be sure if one was simply “hearing” the

other, or if the two signals were truly influencing each other, this does show that the two feedback systems

(i.e., tubes feedback loop and saxophone feedback loop) were sonically aware of and potentially actively

influencing each other. This hypothesis is strengthened by Figures 35, 36, and 37 which show simultaneous

frequencies of the saxophone and each tube respectively. One can see that not only does the saxophone

spend a lot of time on the unison line with each tube, but also that when not on the unison line, the

saxophone is often on an integer multiple line, indicating that the saxophone is in some harmonic

relationship to the tube’s sounding frequency.

16https://vimeo.com/382472269 6:34-6:42

55

https://vimeo.com/382472269

Figure 32: Frequency of saxophone audio analysis in relation to tubes’ harmonic series, while being performed
with only the neck.

Figure 33: Excerpt of saxophone frequencies showing clear pitches in relation to tubes harmonic series.

56

Figure 34: Unison motion between saxophone and C tube analysis frequencies.

Figure 35: Two-dimensional histogram of sax and A tube analysis frequencies.

57

Figure 36: Two-dimensional histogram of sax and C tube analysis frequencies.

Figure 37: Two-dimensional histogram of sax and D tube analysis frequencies.

58

Conclusion When connected in series as one large feedback loop, the tubes act as filters, which interact

with the modulated delay lines and resonance suppressors to create a performance based on a scale similar

to A Mixolydian (created through a combination of frequencies based on the tubes’ lengths). The scale’s

pitches represent the system’s most stable states as heard and seen through analysis. “Battle grounds”

between stable states are areas of activity created by different tubes trying to persuade the system to settle

on a stable unison frequency that is included in their harmonic series. Stochastic elements in the system

probably cause (or obscure the cause of) certain behaviors, such as the cycling of certain frequency

patterns (Figure 13). Some questions remain unanswered, such as why some tube partials are not included

as a stable state and included in the emergent scale.

The analytic approach taken and tools developed are able to reveal the structure found in the

stability and instability of the system. Hopefully these tools can be applied to other feedback systems for

similar results.

3.3.2 Creating Hamiltonian Paths for Phrase and Form Generation

Using “organizing sounds in time” as a definition for compostion frames the process around two questions:

(1) what are the sounds that are being organized? and (2) what is the strategy for organizing them?

Algorithmic composition has a long history of answering the latter and has mostly been focused on the

manipulation of common practice musical objects, such as pitch, note, rhythm, meter, harmony, etc.

(Nierhaus 2009) Recently, AI and machine learning have also been used to analyze and compose music

using these materials as datasets. (Kotecha and Young 2018) (Eck and Schmidhuber 2002) As an electronic

musician I am interested in organizing (and algorithmically manipulating) sound objects from a more

Schaefferian perspective. (Schaeffer 2017) In this study the sounds I set out to organize are a database of

100 millisecond audio samples and the strategy used to organize them is a Hamiltonian Paths created with

(1) an algorithm for solving the Traveling Salesperson Problem and (2) UMAP dimensionality reduction

(McInnes, Healy, and Melville 2018).

In mathematical graph theory, a Hamiltonian Path is a path through a graph that visits each

node only once. A classic computer science problem that uses a Hamiltonian Path is the Traveling

Salesperson Problem which aims to minimize the distance of the Hamiltonian Path, thereby minimzing the

distance a hypothetical salesperson needs to travel on their tour visiting many cities (graph nodes). Using

my database of audio samples as the nodes of the graph, a Hamiltonian Path that connects them all into a

linear organization, which for musical purposes can then be used as a temporal organization.

59

My initial investigations in this strategy used samples of saxohpone, bassoon, drums, bells,

no-input mixer, and synthesizer sounds.17 Each audio file was split into 50 millisecond slices and analyzed

on 23 parameters in SuperCollider.18 This dataset was then imported into Python, normalized, and

processed with the Python library tsp-solver (Goulart 2021), which attempts to find an optimal (or near

optimal) sequence of datapoints that create the shortest path.19 This sequence is then reimported to

SuperCollider and synthesized in non-real time, by copying each 50 millisecond slice into the sequenced

order using an overlap of two and a triangle window. The source audio files and results can be heard here.20

Timbral Fusion Sequencing the audio samples by minimizing the Hamiltonian Path’s distance creates a

temporal organization in which one can hear the algorithm “tour” all the different audio sample nodes.

There are clear moments of touring through the “saxophone”, followed by the “no-input mixer space”, etc.

However, because some saxophone and no input mixer sounds will be similar, the path will often interweave

similar sounds from different sources in indentifiable ways. One can hear many examples of this the

resulting soundfile,21 such as at 3:15-3:18 when an ascending saxophone line is followed by an ascending line

from the no-input mixer and seamlessly handed off back to the saxophone. The algorithm has identified

that these timbres are similar and therefore has placed them in sequence on the Hamiltonian path.

Phrase / Gesture Creation There are also many moments throughout the recording that I hear as

musical phrases or gestures, the first is from 0:29-0:34. After a 29 second quiet, sustained introduction, the

composition (i.e., the Hamiltonian Path) suddently has a five second outburst that starts with a pure high

tone, followed by some noisy moments and a short three note motive, before returning to quiet sustained

timbres. A moment later from 0:38-0:39 a crescendo occurs (officially ending the sustained introduction,

getting into the B section of the work) that has a beautiful gestural shape. Over the course of the one

second, the loudness increases, the timbre becomes less noisy, the morphology becomes less static, the

panning becomes less mono, and the bass register enters at the end of the crescendo. This parametric

gesture and the preceding phrase make for compelling musical expressions, the kind that I might have

created through improvisation or composing sounds in a DAW, but has emerged from this Hamiltonian

17These files can be heard here: https://drive.google.com/drive/folders/1MYfiRtb4MdCsUKiEpiWjcFl0quV8Fm4w?usp=

sharing
18amplitude, spectral crest, spectral slope, spectral spread, loudness, sensory dissonance, spectral centroid, spectral flatness,

spectral percentile, zero crossing, MFCC 1-13
19Since it is not possible to know if the optmial path has been found, the solver stops at some epsilon criteria where it seems

to be no longer improving its solution.
20https://drive.google.com/drive/folders/1MYfiRtb4MdCsUKiEpiWjcFl0quV8Fm4w?usp=sharing
21https://drive.google.com/file/d/1olSVpNBmBlZUynGLfKIKXEy6klcLxXWu/view?usp=sharing

60

https://drive.google.com/drive/folders/1MYfiRtb4MdCsUKiEpiWjcFl0quV8Fm4w?usp=sharing
https://drive.google.com/drive/folders/1MYfiRtb4MdCsUKiEpiWjcFl0quV8Fm4w?usp=sharing
https://drive.google.com/drive/folders/1MYfiRtb4MdCsUKiEpiWjcFl0quV8Fm4w?usp=sharing
https://drive.google.com/file/d/1olSVpNBmBlZUynGLfKIKXEy6klcLxXWu/view?usp=sharing

Path. In a moment like this I, the composer, experience mirroring with the algorithm. The agency of the

algorithm becomes visible and my collaborator is established.

It’s interesting to note that while one can often identify the similarities in sound (and therefore

temporal organization) the algorithm is “trying” to create one can also hear where a juxtaposition seems,

not like a timbral fusion, but out of place; where the algorithm seems to have made a strange choice or

error. One such moment is the sudden saxophone timbre at 0:49, otherwise surrounded by 13 seconds of

bells. While a version with fewer of these “out of place” moments might sound like a more “successful”

(i.e., shorter) path, I hear these “deviations” as compositionally pleasing ornamentation, or recurring

motives that tie the work together. These moments help me perceive agency in the algorithm because they

are surprising. Their conspicuousness seems to convey intention. An output without any surprises such as

these might sound like the cold, calculated output of an algorithm, not one that conveys intent and

therefore agency.

Form While I don’t think that the resulting soundfile works formally as a finsihed composition, there are

some intersting emergent formal properties. The most obvious one is the long sustained introduction. The

Traveling Salesperson solver algorithm starts its path at a random point, so it is by chance that this section

became the introduction, however even if it was elsewhere it would still likely have clustered these sounds

together in time because they are so different from anything else in the dataset (they are a distant island of

points in the 23 dimensional space). Other emergent forms include the alternating of phrases, moving

between different sound sources, often every 3 to 10 seconds. These phrase alternations also appear with

transitional cues where it seems the path has had to traverse across one space to get to the next, such as

the synthesiser sounds from 1:56-1:57 that act as a transition from saxophone sounds to drum sounds.

Figure 38 shows the relationship between different positions in the input files and their position in the

output file. All the source soundfiles are represented on the y axis, not in any particular order. The start of

each file is at the bottom of it’s horizontal bar, the end at the top. The x axis represents the duration of

the output file, the beginning on the left, the end on the right. The red line represents y = x, so any shapes

that appear parallel to it have occured in the output file in the same temporal ordering as in their source,

as can be seen and heard during the introduction, which uses mostly sounds from the “sustain elec 01”

sound file. The musical material that was generated with this algorithm was ultimately used in a tape part

for my work squall,22 by slicing out phrases and moments that I found most successful.

22https://drive.google.com/file/d/1vlMoSnKt3oP6ZqjnVB4tACec-_PUzCwW/view?usp=sharing

61

https://drive.google.com/file/d/1vlMoSnKt3oP6ZqjnVB4tACec-_PUzCwW/view?usp=sharing

Figure 38: Comparative Matrix of sound source positions in original file (y axis) and positions in minimal
distance Hamiltonian Path (x axis) for sound sources: saxohpone, bassoon, drums, bells, no-input mixer,
and synthesizer.

Comparing TSP and UMAP Another dataset on which I used this strategy consists of sound samples

of flute, cello, piano, and mixed percussion. The piece was commissioned by the Switch Ensemble for the

2021 SEAMUS Online Conference. After composing around two minutes of music for the performers to

audio and video record, I analyzed the audio tracks in 100 millisecond23 slices using 51 analysis

parameters.24 From the nine FFT frames in each 100 millisecond slice I extracted statistics on the analysis

parameters and their first derivates, which in total created an analysis vector of 714 dimensions. Using

principle component analysis on this dataset enabled me to reduce the number of dimensions to 11 while

retaining 99% of the variance.

Using the 11 principle components as my new analysis vectors I first used the same tsp-solver

(Goulart 2021) algorithm as above to create a minimal distance Hamiltonian path of these sounds. I then

recombined the sequence of 100 millisecond sound slices (and their video frames) into a new file.25 Figure

39 again shows where each slice in the final path came from in its respective source file.26 Because the act

23For this implementation I chose 100 millisecond slices rather than 50 milliseconds because there was video involved. At 50
milliseconds, there would most often only be one video frame associated with each slice. With 100 millisecond slices, there will
most often be 3 frames per slice, making the video aspect of the experience more relevant.

24spectral centroid, spectral spread, spectral skewness, spectral kurtosis, spectral rolloff, spectral flatness, spectral crest,
pitch, pitch confidence, loudness, true peak, and 40 MFCCs; for FFT analysis the window size was 1024 with a hop size of 512

25https://drive.google.com/file/d/1Iz3J5ayEJa20MM3YIPZpFHN0G4Qx-XCd/view?usp=sharing
26The x axis is the time base for the output file and each source file’s y axis represents the position from that file, the top of

62

https://drive.google.com/file/d/1Iz3J5ayEJa20MM3YIPZpFHN0G4Qx-XCd/view?usp=sharing

of converting the 11 dimensional space to a Hamiltonian Path is essentially reducing the space down to 1

dimension, I next decided to use UMAP (Uniform manifold approximation and projection) (McInnes,

Healy, and Melville 2018) as another, different strategy to reduce the number of dimensions of the dataset

from 11 principle components to 1 dimension. I then similarly reorganized this sequence of 100 millisecond

sound slices into a audio-video file.27 Figure 40 shows the projection’s relation to source sound files.28

Starting from the 11 principle components in both cases (tsp-solver and UMAP) allows for an interesting

comparison in the results.29 Comparing the aesthetic qualities of each algorithm’s output offers some

possible heuristics for future Hamiltonian Path implementations.

Figure 39: Comparative Matrix of sound source positions in original file (y axis) and positions in minimal
distance Hamiltonian Path (Traveling Salesperson Solution) (x axis) for sound sources from “quartet”.

The resulting video created with the tsp-solver algorithm (as opposed to UMAP) moves between

different timbres more quickly, often giving a sense of gestural transition between them. An initial sequence

(from the beginning to about 0:12) moves through a clear clustering of sustained pure sounds from the

the horizonal bar represents the beginning and the bottom represents the end. Color indicates distance to the next point, but
most are quite low distances, so color is not particularly valuable here.

27https://drive.google.com/file/d/1chQvJfLZZpXqxU2ao6leAMyMriJRSGyG/view?usp=sharing
28In this plot, color simply represents position in the output soundfile, the same as the x axis.
29Also, asking UMAP to reduce a 714 dimensional dataset to 1 dimension would be very CPU intensive and my 11 principle

components retain the vast majority of the variance, and therefore remove a lot of redundancy, so it makes sense to use this
approach even if comparison was not a goal.

63

https://drive.google.com/file/d/1chQvJfLZZpXqxU2ao6leAMyMriJRSGyG/view?usp=sharing

Figure 40: Comparative Matrix of sound source positions in original file (y axis) and positions in ordered
one dimensional UMAP projection (x axis) for sound sources from “quartet”.

flute, cello (natural harmonics), and bowed vibraphone, before the path then begins rapidly changing

between instruments, not always with clear sonic relationships and connections. These rapid changes create

contours in dynamics, pitch, and timbre that imitate gestures or phrases a composer might write. (Of

course this may be, in part, because the source material that these 100 millisecond slices are drawn from is

recorded audio of musical gestures and phrases that a composer did write.) One such phrase can be heard

from 0:21-0:31. In particular, the changing notes in the flute create a melodic contour over these ten

seconds, which is also supported by pitches in the cello and piano. Additionally, changes in register,

loudness, and timbre give the passage a dynamic energy that I find musically compelling. These quick

changes between source files can be seen in Figure 39. Although there is some clear clumping of certain

soundfiles near the beginning, the path clearly jumps around somewhat frantically throughout most of the

sequence. There are small clumps in various places where one section of one sound file seems to have been

focused on intensely for a short period of time.

The video created with the UMAP algorithm has a very different musical sensibility to it. Unlike

the tsp-solver video, it does not have abrupt changes in timbre, instead creating longer trajectories of

transformation that often cover a more homogenous body of sound. For example from 0:07 to about 0:40

64

the cello sound transforms from low and forte to high and piano. Other instruments such as the bass drum

and flute are mixed into this trajectory in appropriate sounding places. The overall form of this video more

clearly divides the instruments into different sections, beginning with the cello trajectory and then moving

through large clusters of piano, flute, and percussion. Interestingly, the ending shows a similar clustering as

the tsp-solver video beginning, clustering the pure sustained sounds from the flute, cello, and vibraphone.

Figure 40 again shows these relationships visually. Unlike Figure 39, one can see the sounfiles more clearly

clustered with themselves and even clustered with other soundfiles of similar timbres (such as the “Zach”

clustering about half way through which interleaves slices from the files “forZach”,

“210408 221536 creatures zach”, and “210408 221536 comp0 zach”). The larger trajectors heard in the

video can be observed as density crossfades bewtween these clusters such as the opening transitions

between source files “210408 221536 comp0 megan” to “210408 221536 comp0 tj” to

“210408 221536 shoe squeak tj” to “210408 221536 creatures tj”. Comparing Figures 39 and 40, one can

also observe similar tight clusters in specific soundfiles in different places in the the timeline (highlighted by

colored boxes).

When used in the context of the composition, titled “quartet”,30 these two videos were edited to

remove sections I did not like and reorganized to create composed form. Material from the tsp-solver video

was mostly used as gestural phrases and connective music, while material from the UMAP video was used

for larger formal trajectories.

4 Conclusion: Human-AI Alignment

4.1 A few brief answers to the question “Why?”

After reviewing the four examples of practice-based research in Section 3, one might wonder, Why do all

this? Why take on the task of being a data scientist when composing is hard enough? One answer is

because I find using these tools to manipulate sound very exciting. The conceptutal and sonic ideas these

tools offer and the artistic and technical problems they pose stimulate my creative thinking and feed my

creative energy in a very valuable way. Using these ideas makes me excited to sit down at my desk and do

the work of composition vigorously and often and, I think, that is a good indication of vocation and a good

recipe for compelling artistic results.

Another reason is because I find that using new and idiosyncratic processes will lead to new and

30https://vimeo.com/540621361, password: framerate

65

https://vimeo.com/540621361

idiosyncratic sounds, forms, and compositional conceits–or more generally, new music–thereby expanding,

advanding, and individuating my artistic voice. The music that I find most exciting expands or challenges

my conception of what music composition is or can be and I try to cultivate that richness of experience in

my own work. By expanding and individuating my voice, the experiences that my art offers may become

more inventive, thought provoking, and therefore compelling for audiences.31

4.2 The Optimization Problem (aka. Composing)

In order to analyze, a little more critically, why a composer might use AI in their compositional process, I

propose to think about the act of composition as a classic optimization problem in computer science.

Given any synthesis algorithm (whether it be electronic like frequency modulation, or analog such as a

violin) (and not to mention the combinatoric possibilities of synthesis algorithms that composers actually

use), there is a huge multidimensional space of possible sonic outputs and morphologies. The process of

composing necessitates identifying and temporally navigating some smaller subset of these possibilities.

This of course is the expression of the composer’s agency, the act of composition. Assuming this act carries

the intention of creating art that is compelling and that some solutions will be more compelling than

others, music composition becomes an optimization problem. How can I, the composer, find the optimal

(or near optimal) subset of sonic morphologies (i.e., a compelling music composition) from the given

parameter space?

One problem with trying to find the optimal solution is an inaccessibility of some zones within the

high-dimensional space of sonic possibilities. Not having access to some of the possible sounds limits the

potential for actually acheiving an optimal solution, just like not having access to all roads limits the

potential of finding the fastest route home. This inaccessibility may be caused by a lack of technical

knowledge, such as not knowing how to notate a woodwind multiphonic and therefore not including it in a

composition. Historically, the accessibility of many sonic spaces was pioneered by artists on the avant

garde. Only after woodwind players and composers began using multiphonics did that “sonic space” open

up as accessible and therefore considerable (by more composers) for inclusion in their optimal solutions.

Most often, however, the inaccessibility of some zones is caused by the limitations of the human mind. It is

simiply difficult to imagine new combinations of sounds, notes, rhythms, timbres, notations, technologies,

31Another reason for using these tools that is less central to my thinking but still worth considering is that, in the new music
industry composers are increasingly benefitting from strong individual brands that are centered around salient aspects of their
music or artistic practice. (Ritchey 2019) Using AI in my work is also intended to add to my brand as a composer working
on the cutting edge of music technology, which can be observed by how I frame my work through prose, but also, hopefully,
through the unique sounds and forms my work presents.

66

playing techniques, interactions, and so many other interconnected dimensions of creativity. Even if it were

always easy to think of new combinations of parameters, a human lifetime would simply not have the time

or energy to actually investigate any considerable size of the possible parameter space.

The analogy of the optimization problem is an oversimplification of the act of composition, namely

that I have avoided truly answering what is being optimized, ostensibly the very subjective notion of “the

degree of compellingness of the art.” However framing this act, in part, as perusing a high-dimensional

space for “compelling” sonic forms helps frame why electronic and computer musicians, such as myself, (as

well as artists of other disciplines) have pursued employing technological collaborators in their work: the

agents created can help increase the breadth and speed of exploring new spaces, as well as surprise the

human with unconsidered suggestions of new spaces. The question then becomes, What affordances do

different technologies offer to collaborate in this exploration? Which technologies are most useful?

4.3 Human-AI Alignment

One way of measuring which technologies are most useful in approaching the optimization problem is by

analyzing which are most able to “absorb” and “understand” the human’s musical values, goals, and

intentions, thereby being able to interpolate and extrapolate valuable creative suggestions. The “Father of

Cybernetics,” Norbert Wiener along with Arturo Rosenblueth and Julian Bigelow, say in their landmark

paper, “Behavior, purpose and teleology,” “All purposeful behavior may be considered to require negative

feed-back.” (Rosenblueth, Wiener, and Bigelow 1943) Their use of the term negative feedback signifies

“that some of the output energy of an apparatus or machine is returned as input;...the behavior of an

object is controlled by the margin of error at which the object stands at a given time with reference to a

relatively specific goal.” When collaborating with a technology to make art, the “relatively specific goal” is

the user’s artstic goals (whether they be precisely defined or not), therefore the “margin of error” refers the

the how closely the system’s current output achieves this goal.

The cybernetic feedback loop this creates operates by inviting the technological collaborator to

offer a suggestion in the parameter space, which the human can then provide feedback on. This may take

the form of indicating that a particular suggetion and everything potentially near it is either interesting or

uninteresting (i.e., aligned or unaligned with the human’s musical values). Feedback could also be provided

by slightly tweaking some suggestion so it becomes more aligned with the human’s musical goals. The

technology system then has a way of incorporating this feedback so subsequent suggestions may be more

aligned with the human’s musical goals. Proving this feedback amounts to “training” the system to behave

67

as desired. The more trained and aligned a system becomes with the human’s musical values, the more

likely it is for the human to perceive mirroring from the system, thereby identifying a collaborative agent.

The usefulness of a technology for solving the optimization problem can therefore be measured in how

effectively this cybernetic training feedback loop functions, namely the quantity, speed, and quality of

information that is relayed in this communication.

In order to analyze the potential for human-AI alignment with different creative technology

systems, I analyze below three descriptions of technology training processes in increasing order of potential

for alignment: using (1) randomness, (2) complex systems, and (3) machine learning.

4.3.1 Approaching the Optimization Problem with Randomness

Pioneering computation artist Vera Molnár clearly states her use of randomness to approach the

optimization problem, saying,

There is this old romantic idea which is called “intuition”. An artist has talent, a genius, sits
down, has a drink and creates. And intuition does what it does. Sometimes it creates something
good, sometimes not. Now, when we work with computers we’re modern and say intuition is old
fashioned. I’m not interested. But, there is a thing that can replace intuition. It’s randomness.
Because of course, we have more sophisticated machines now it will show you billions of
possibilities, of which, with your limited imagination, couldn’t have thought of. So it enriches
the senses. So, randomness has a lot of importance, but not in the way of Dada. It’s not to say
“anything can be art”. On the contrary, It helps me to better find what I like. Because when
you work with intuition, you do ten, twelve, fourteen tests, at the twentyish you’re tired and
stop. With computers You can first open up the entire spectrum and say, this is the part that
interests me and not the rest. So, you place the focus and develop all possibilities within. After
you’ll find, the interesting part is rather over here, so you get closer. (Batty 2019)

Clearly she is approaching artistic creation from a computational mindset, using randomness32 to iterate

over possibilities within parameter space and then identifying which results she prefers. She also views the

randomness of her computer as an AI collaborator saying it surprises her with things she wouldn’t have

thought of, yet that she finds artistically interesting. In this section I consider using randomness in this

way assumes that parameters are controlled by independent random modulations. If there were extensive

interconnections or feedback loop connections I would consider it to be a complex system.

Randomness has also been used as a source of contingency and collaboration in electronic music

from its inception. Writing about John Cage’s use of radios in Imaginary Landscape No. 4, Weinberg

states, “Inspired by the Chinese book of oracles, the I Ching, Cage demonstrated his fascination with

32Although computation random number generators are not truly random, but rather, complex systems, I am treating them
here as random, since perceptually this is how they operate.

68

chance operation, allowing players to control only partial aspects of the composition, while technology,

chance, and performers together determined the actual audible content. The role of Cage as a composer

was narrowed down to setting the high-level blueprint of dial-setting instructions.” (Weinberg 2005) With

the development of computer music, new sources of randomness have been created and used. In his essay,

Why do we want our computers to improvise? George Lewis relates sources of digital randomness33 in his

computer programs to “improvise” saying that he has “made efforts to imbue interactive systems with

values such as relative autonomy, apparent subjectivity, and musical uniqueness rather than repeatability.”

(Lewis 2018)

The problem with randomness One problem with using randomness to explore high dimensional

parameter space is that the space is explored, well, randomly. This directionlessness amounts to simply

waiting for an interesing combination of parameters to occur, and if this happens, the composer can hit the

proverbial save button and have an interesting musical object or pocket of parameter space to explore

further. However, waiting makes for an inefficient process of training the technology to come into alignment

with the user’s goals. One solution, increasing the complexity of the system slightly (by increasing the flow

of feedback), is tuning the randomness by selecting weights or distributions (such as Brownian or Guassian)

as well as ranges to narrow the randomness’s possible output. The feedback process of tuning randomness

acts as subtractive filtering, potentially closing off zones within a parameter space that have perhaps yet

been underexplored. Furthermore, tuning randomness in this way requires the human to maintain a

working knowledge of how each parameter affects the sonic result, which limits the potential for surprise.

Additionaly, using random numbers will not necessarily create a good imitation of human

behavior or human improvisation, limiting the potential for them to be percieved as mirroring. Human

musical activity (while clearly capable of producing surprise) is not created randomly, but is instead guided

by multitudes of prior experiences (training) and influenced by situational contexts (response to stimuli).

New Renaissance Artist The Honourable Elizabeth A. Baker explains of human improvisers that,

“improvisation is not free and that we need to really stop using the term free improvisation...Humans can’t

have free improvisation because our mind can only pick from things that it knows”. (Baker 2020)

Randomness is categorically unpredictable Technological musical behavior that suggests human-like

training and human-like response to stimuli is more likely to be perceived as mirroring one’s own (human)

33As seen in a diagram included in the essay that shows his use of Max’s “drunk” object, which generates “random numbers
within a specified step range” (Cycling74 2020)

69

intentions–more precisely fulfilling Leman’s criteria for perceiving agency in music. Leman extends the

recognition of intention to also include the ability to predict an agent’s actions, saying, “By looking at how

a person moves and behaves, I can understand that person as an intentional being. My understanding of his

or her intentions allows me to predict his or her actions and understand them as part of an understanding

of my own actions,” and “Corporeal articulations are conceived as reflecting the action-oriented ontology

that is induced by moving sonic forms in music. They exhibit prediction and anticipation of stimulus

properties.” (Leman 2008) Computer generated randomness is, by design, extremely unpredictable, making

it less prone to create actions that can be perceived as mirroring human intentions.

4.3.2 Approaching the Optimization Problem with a Complex System

Randomness and Complexity are Different In pursuing a definition of complexity, Peter

Grassberger clearly states that, “complexity is not equivalent to randomess, but rather is between order

and chaos”. (Grassberger 2012) One salient definition of complexity he gives is that “Complex systems are

usually composed of many parts, but this alone does not yet qualify them as complex...What is important

is that there are strong and non-trivial correlations between these parts. Technically, this is best explained

via mutual informations”. (Grassberger 2012)

While collaborating with a complex system (such as a modular synthesizer in Section 2.2.3), these

mutual informations, or non-trivial correlations between parts, are identified as intended correlations

between parameters, such as the pitch and filter sweeping together, while the volume crescendos, all in a

musical way (that the user would desire, thereby creating mirroring). As described above, if independently

randomly modulated, one might have to wait a long time for these parameters to align. If multiple

parameters are modulated by the same random source, their correlations would be trivial. By training a

complex system, the user can organize and tune the interconnections and feedback loops of the system

creating non-trivial correlations between parts. This training orients the system towards making sonic

forms more likely or more often aligned with the user’s musical goals and more likely to create mirroring,

all while maintaning a level of complexity that still allows for surprise, as seen in Section 2.2.3.

It should also be observed that the process of creating the patch, prior to the degree of complexity

that can induce surprise, is an important part of the training process. It is at this stage that the user

embeds in the system artistic choices that already begin to align the technology’s musical orientation with

their own goals, such as choosing to use frequency modultation rather than subtractive synthesis or

whether or not to sample and hold a certain modulation. Each step in this process (perhaps at each added

70

interconnection) offers a sound for the user to then provide feedback on by removing, altering, or adding

more interconnections.

Complexity, Mirroring, and Alignment Grassberger’s notions of complexity resonate with Leman’s

concept of mirroring by explaining complexity as phenomenological meaning, stating, “More important

than correlations among the parts of a complex system are often correlations between the object and its

environment...the letters of a novel in some language could hardly be considered as complex if there were

no possibility in principle to read it. The ability to read a novel, and to perceive it thus as complex,

requires some correlation between the novel and the reader”. (Grassberger 2012) The complexity of an

object can exist only in relation to its environment just as the agency of Leman’s moving sonic form can

exist only in relation to a listener. In both cases these relations need to have some “correlation”, some

critera upon which the relation is based (e.g. musical simultenaity or shared directionality), and a critera

of non-triviality that enable a listener to identify perceived correlations as non-trivial, or in Leman’s case,

mirrored. In Grassberger’s example the criteria is a shared written language of vocabulary and grammar.

Musically, recognizing an agent through mirroring or non-trivial correlations is similarly based on a shared

vocabulary and grammar of music and sound, one that may be more ubiquitous, such as 18th century

counterpoint, or the idiosyncratic voice of a composer.

Grassberger goes on to explain that the meaning conveyed through non-trivial correlations is

similar to Claude Shannon’s notion of information density in a message. The amount of information (in

this case musical meaning) a message conveys not only depends on what is in the message but on the

context in which it is received (i.e., the legibility to the receiver). The indexical relations it points to are

taken on as part of the meaning conveyed. Grassberger states that, “a situation acquires some meaning to

us if we realize that only some of its features are essential, that these features are related to something we

have already stored in our memory, or that its parts fit together in some unique way. Thus we realize that

we can replace a full, detailed and straightforward description by a compressed and more ‘intelligent’

description which captures only these essential aspects, eventually employing already existing information”.

(Grassberger 2012)

Similar to the subjective definition of AI in Section 2.1, both Grassberger’s definition of

complexity and Leman’s definition of sonic agency point towards a subjective understanding of human-AI

alignment. It is not only left up to the subject to identify what technology is an agent, is complex, and is

aligned with their values, but those identifications necessarily rely on the degree to which the AI expresses

71

creative suggestions with a grammar and vocabulary legible to the user. Because in the case of

musician-technology collaborations the user is often the person designing the AI collaborator and brining it

into alignment through training, this shared language, however idiosyncratic, is central to the collaboration.

4.3.3 Approaching the Optimization Problem with Machine Learning

Written before the recent wave of interest in artificial intelligence, George Lewis observed the reflexive

nature of system design and the centrality of a shared vocabulary between user(s) and a system, saying,

“Musical computer programs, like any texts, are not ‘objective’ or ‘universal,’ but instead represent the

particular ideas of their creators. As notions about the nature and function of music become embedded

into the structure of software-based musical systems and compositions, interactions with these systems

tend to reveal characteristics of the community of thought and culture that produced them.” (Lewis 2000)

While Lewis describes heuristic choices made by system designers, Rebecca Fiebrink has more recently

observed that the act of embedding the “characteristics of the community of thought and culture” can

instead now be done with machine learning algorithms through training examples, stating,

There are certain things that we care about, as musicians for example, that are really hard to
articulate in code [(i.e., heuristically)]. It’s hard for me to talk about what kind of quality of
sound I want and then translate that into a set of filter coefficients. It’s hard for me to talk
about how I want a performer to move on stage and then translate that into some sort of
mathematical equation for their trajectory. But it’s a lot easier for me to either find examples of
sounds that have a particular quality or to give examples of movements or if I’m using other
types of modalities, often curating or creating examples are just way easier for us as people.
And this relates to the types of tacit knowledge and embodied knowledge we bring to creative
practices. Even if you’re an expert coder, you’ve had this experience of–there’s stuff that’s just
really hard...to articulate–it’s not because you need to be a better coder, it’s because as humans,
there’s stuff that we can breakdown into math easily and there’s stuff that we can’t (CeReNeM
2019)

Fiebrink makes clear how machine learning uses a process, different from either randomness or a comlex

system, to train the human’s musical values and goals into the system, than either randomness or complex

system. Rather than waiting for randomness to create mirroring or non-trivial relations, or manually

tuning the interconnections of a complex system to bring it into alginment, training using machine learning

consists of creating a dataset that expresses the musical values and goals the system should mirror and the

non-trivial relationships the user desires. Existing as a dataset, these relationships and values are

independent of the machine learning system that will learn them.

Training the system itself then functions as an iterative cybernetic feedback loop (similar to

tuning randomness and building up a complex system), however rather than iterating directly with and

72

getting feedback from the human’s ears and musical judgement, it instead iterates with the human’s

musical judgement, getting feedback through the dataset provided. The algorithm that trains a neural

network, called back-propogation, works by coming up with possible outputs (randomly at first), then

checking the dataset to see to what degree the output aligns with the human’s musical values and goals. It

measures an error (as described by Wiener, Rosenblueth, and Bigelow) then corrects itself slightly (by

tuning the internal interconnections) to try to make a better suggestion next time. These error-correcting

iterations happen at the maximum speed of the computer, going through an entire dataset thousands of

times before a user reingages directly with the system. This training cybernetic loop between the human’s

values and the system’s output is clearly faster and able provide higher quality information than manually

training randomness or a complex system.

The ability to train machine learning systems so quickly allows for an additional cybernetic

feedback meta-loop. Users are able to train various datasets, hear how each one might behave and provide

feedback to the meta-system about which trainings are most aligned with their musical values. While

tuning randomness or training a complex system both necessitate closing off zones of the high dimentional

parameter space, the meta-loop of training on multiple datasets allows the user to keep the possible

parameter space wide open as different datasets and their trainings can access different zones in the high

dimensional space. Each dataset used can act as an individually trained complex system. Using machine

learning for approaching the optimization problem is incredibly useful as one is able to clearly express

musical preferences through datasets, quickly bring the AI system into alignment through backpropagation,

and easily switch between trainings, maintaning access to the entire parameter space.

Being surprised by a neural network. Employing a machine learning algorithm as a collaborator

requires, not only alignment, but also surprise. The user still needs to experience the outpus of the system

as useful creative suggestions they they might not have come up with on their own. In the example of

Richard Devine using the complex system of his modular synthesizer as a collaborator (Section 2.2.1), one

reason he is able to be surprised is because he is not able to keep track of all the interconnections that are

creating the sound. A neural network has hundreds, often thousands, of hidden parameters that the user

does not interact with. The inability of the user to even identify, let alone keep track of, these parameters

primes the user’s experience for creating surprise. When using a neural network (or other machine learning

algorithms) there is often a sense of wonder at what it does and creates, a sense of surprise that sufficiently

separates its outputs from seeming trivially connected to the inputs.

73

Conclusion To sum up, these three collaborative technologies all have the potential for to create surprise

and mirroring and therefore can be perceived as aligned AI collaborators. Randomness is least likely to

offer this result as one must wait for random modulations to combine just right. Through tuning

randomness, one can increase this possibility some, but this also requires the intimate working knowledge

and maintainence of many parameters, limiting the potential for surprise. Complex systems are more likely

to be perceived as AI collaborators because they allow for the tuning of interconnections and feedback

loops that more frequently can create non-trivial correlations between parts of the system. Focusing one’s

attention on these interconnections allows one to loose track of the individual parameter modulations,

increaseing the possibility for surprise, while keeping a working knowledge of the system as a whole.

Machine learning algorithms greatly increase the speed and precision of training a system, thereby

affording the most potential for brining a system into alignment through mirroring. This increased facility

allows for a further zooming out from individual parameters to allow approaching the machine learning

collaborator as multiple easily accessible systems, all capable of differently navigating the parameter space

of possibilities.

4.4 The Sweet Spot of Alignment: Assistants and Collaborators

In the AI Saftey and AI Ethics disciplines, the problem of aligning AI and human values is known as “The

Alignment Problem”. (Christian 2020) The desireable degree of alignment between human and AI is not

always clear. Often we think of examples where we do want the AI to be as aligned with humans as

possible. For example we don’t want to create an AI tasked with solving global warming to wipe out the

human race as its optimal solution, we want the AI to value human life. However, we often want our AI to

not be so aligned with humans that it reproduces human bias and prejudice, as has been seen in predicitve

policing AI systems based on human curated data. (Christian 2020) Also there are yet debated ethical

thought experiments about with which human(s) the AI should be aligned, such as whether the self-driving

car should hit and kill two jaywalkers, or avoid doing so by swerving off the cliff and killing the occupant.

Extending the composer’s agency Employing AI collaborators in music draws correlate

consideration. In each of the three examples above (randomness, complex systems, and machine learning),

the training process is an imposition of the composer’s musical values into the system they are working

with. This process is an extension of the composer’s agency into the technology, with the hope that the

technology will express back to them their own musical values, a further extention of their agency, which

74

creates the cybernetic loop. In this loop, the technology acts as a filter. It is not able to precisely recreate

the composer’s intentions back to them; the intentions are necessarily altered in some way. If altered

beyond recognition (very low alignment), the filter is too strong, mirroring will not occur, and this

technology likely will not feel collaborative. If the filter is too weak, and the intentions of the composer are

returned to them precisely (e.g., recording audio from the composer and playing it back), the alignment is

too strong, and the technology is not a valuable collaborator. In fact, the technology would not be

perceived as an agent at all, as described in Section 2.2.2.

Aligning with Humans Measuring alignment as an indication of collaborative value can also be done

for human collaborators. If I am looking to collaborate with an improviser, finding someone who always

outputs the same or very similar sounds as I do (high alignment) would not bring much value to the

performance, as a solo performance would sound essentially the same. A collaborator who only improvises

in the style of 18th century keyboard music (very different from me) would make for a musically disjointed

performance, as our vocabularies would limit musical communication and meaningful interaction.34

The Sweet Spot Often, approaching the optimization problem with a technological collaborator

involves finding the right balance of alignment, the right amount of distortion in the filter.35 For any given

problem, the above strategies (randomness, complexity, and machine learning) offer different proclivities for

alignment, all of which may be valuable and pursued at different times for different reasons. Although I

resist drawing a linear continuum between AI assistants and AI collaborators, comparing different relations

between them reveal different points of alignment. Keeping a technological system relatively unaligned,

such as with randomness, allows a broad and open-ended exploration of possibilities. Training a machine

learning system to a high degree of alignment (such as in Section 3.2) can perform a complex task with

high accuracy (thereby not offering surprise), creating an AI assistant. Employing a complex system that

exhibits both surprise and mirroring can be an redoubtable agent to improvise alongside. Systems with

varying degrees of alignment may act in different roles at different times. Engaging and training a

technological system is not always in pursuit of the highest degree of alignment, instead it is in pursuit of

the degree of alignment that is appropriate for the artistic task at hand.

34Although, the metaphor breaks down at some point here. I would be very curious to experiment with this collaboration.
35Many machine learning algorithms offer a way of quantifying the degree to which they align with a human’s values (as

expressed through data). This measurement is called the “loss” or “error”, which is a measure of the difference between the
algorithm’s output and the desired output as specified in the dataset. A low “error” measurement indicates high alignment.
Training or retraining machine learning systems to achieve different levels of error (i.e., alignment) may be a useful strategy
for approaching a desireable degree of alignment. However, each dataset, context, and useage will produce different errors that
will result in different degrees of perceived alignment, therefore the measure cannot be universally compared.

75

4.5 Conclusion

Palle Dahlstadt clarifies that although training collaborative technologies can be used to extend human

agency into a musical system, current AI technology will never be able to behave as a human would.

Describing a performance between improvising pianist Magda Mayas and George Lewis’ Voyager, he says,

“Basically [Voyager] reacts to what she’s playing but it doesn’t have the whole picture of her as a musician

or anybody else as a musician, I guess because that’s too big...No AI system has that...It’s always

incomplete...there’s so many other things that weigh in.” (Karlsruhe 2020) Framing the creative act as an

optimization problem is reductive because it suggests there is an optimal solution, which is of course not

true. Artistic creation is so complex with so many “things that weigh in”, it is an immense challege even

for humans, the highest powered processing units ever observed. AI systems are no where near, at least

currently, able to engage with creativity at the level of sophistication as humans. The technological

collaborators described above can assist creativity, both as AI assistants, but also as AI collaborators,

assisting in the exploration of artistic possibilities. The cybernetic relationships I develop with these

technologies are not in place of any compositional act, they are themselves a compositional act extending

my artistic agency futher and more deeply into the world.

Ge Wang states, “At the end of the day, AI systems are built to help humans. The value of such

systems lies not solely in efficiency or correctness, but also in human preference and agency.” (Wang 2019)

I create these cybernetic loops, in part, to filter my creative values and ideas through technological

collaborators as a strategy for exploring creative possibilities. The most important filter in this loop,

however, is my own artistic preference. This filter determines what artistic ideas get rejected, pursued,

explored, and ultimately shared with an audience.

76

References

Baker, The Honourable Elizabeth A. 2020. Talking Free Music with Elizabeth A. Baker. YouTube. Visited
on 11/15/2020. https://www.youtube.com/watch?v=5WjmVLd7XEM.

Batty, Joshua. 2019. Vera Molnar computer art. YouTube. Visited on 04/25/2021.
https://www.youtube.com/watch?v=BCZNNZGz5YI.

Brandtsegg, Øyvind, Sigurd Saue, and Thom Johansen. 2011. “A Modulation Matrix for Complex
Parameter Sets.” In NIME, 316–319.

Bridson, Robert. 2007. “Fast poisson disk sampling in arbitrary dimensions”. ACM SIGGRAPH 2007
Sketches, SIGGRAPH’07 : 2006. doi:10.1145/1278780.1278807.

CeReNeM. 2019. Rebecca Fiebrink: Machine Learning as Creative Design Tool.
Centre for Research in New Music. YouTube. Visited on 11/23/2020.
https://www.youtube.com/watch?v=Qo6n8MuEgdQ.

Chowning, John M. 1973. “The synthesis of complex audio spectra by means of frequency modulation”.
Journal of the audio engineering society 21 (7): 526–534.

Christian, Brian. 2020. The Alignment Problem: Machine Learning and Human Values. WW Norton &
Company.

Collins, Harry, and Trevor Pinch. 2006. “On Chance and Contingency”. Public, no. 33.

Cycling74. 2020. drunk Reference. Visited on 11/14/2020.
https://docs.cycling74.com/max8/refpages/drunk.

Dodge, Charles, and Thomas A Jerse. 1997. Computer music: synthesis, composition and performance.
Macmillan Library Reference.

Eck, Douglas, and Juergen Schmidhuber. 2002. “Finding temporal structure in music: Blues improvisation
with LSTM recurrent networks”. In Proceedings of the 12th IEEE workshop on neural networks for
signal processing, 747–756. IEEE.

Fiebrink, Rebecca, and Laetitia Sonami. 2020. “Reflections on Eight Years of Instrument Creation with
Machine Learning”.

Fieldsteel, Eli. 2018. LightMatrix Sound Test 2018-09-17. YouTube. Visited on 11/07/2020.
https://www.youtube.com/watch?v=gSzCbf8i0EY.

Goulart, Fillipe. 2021. python-tsp. Visited on 04/21/2021. https://pypi.org/project/python-tsp/.

Grassberger, Peter. 2012. “Randomness, information, and complexity”. arXiv preprint arXiv:1208.3459.

Hunt, Andy, and Marcelo M Wanderley. 2002. “Mapping performer parameters to synthesis engines”.
Organised sound 7 (2): 97.

I Dream of Wires. 2013. Richard Devine: IDOW Extended Interview #8 (Analog Voodoo Effect). YouTube.
https://www.youtube.com/watch?v=Z7naEUAYDfg.

Kang, Laewoo, Steven J Jackson, and Phoebe Sengers. 2018. “Intermodulation: Improvisation and
Collaborative Art Practice for HCI”. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, 1–13.

Karlsruhe, ZKM. 2020. inSonic 2020: Syntheses - Day 2. YouTube. Visited on 01/17/2021.
https://www.youtube.com/watch?v=sooNxK6oQ4c.

Kotecha, Nikhil, and Paul Young. 2018. “Generating Music using an LSTM Network”. arXiv: 1804.07300.
http://arxiv.org/abs/1804.07300.

Leman, Marc. 2008. Embodied music cognition and mediation technology. Cambridge, MA: MIT press.

Lewis, George E. 2000. “Too Many Notes: Computers, Complexity and Culture in Voyager”. Leonardo
Music Journal 10 (2000): 33–39. issn: 0961-1215. doi:10.1162/096112100570585.

77

https://www.youtube.com/watch?v=5WjmVLd7XEM
https://www.youtube.com/watch?v=BCZNNZGz5YI
http://dx.doi.org/10.1145/1278780.1278807
https://www.youtube.com/watch?v=Qo6n8MuEgdQ
https://docs.cycling74.com/max8/refpages/drunk
https://www.youtube.com/watch?v=gSzCbf8i0EY
https://pypi.org/project/python-tsp/
https://www.youtube.com/watch?v=Z7naEUAYDfg
https://www.youtube.com/watch?v=sooNxK6oQ4c
https://arxiv.org/abs/1804.07300
http://arxiv.org/abs/1804.07300
http://dx.doi.org/10.1162/096112100570585

— . 2018. “Why do we want our computers to improvise?” Chap. 9 in The Oxford Handbook of
Algorithmic Music, ed. by Alex McLean and Roger T. Dean, 123–130. Oxford: Oxford University Press.

McInnes, Leland, John Healy, and James Melville. 2018. “Umap: Uniform manifold approximation and
projection for dimension reduction”. arXiv preprint arXiv:1802.03426.

Nierhaus, Gerhard. 2009. Algorithmic composition: paradigms of automated music generation. Springer
Science & Business Media.

Peters, Deniz. 2013. “Haptic illusions and imagined agency: Felt resistances in sonic experience”.
Contemporary Music Review 32 (2-3): 151–164.

Pluta, Sam. 2012. “Laptop Improvisation in Multi-Dimensional Space”. PhD thesis, Columbia University.

Ritchey, Marianna. 2019. Composing Capital: Classical Music in the Neoliberal Era. University of Chicago
Press.

Rosenblueth, Arturo, Norbert Wiener, and Julian Bigelow. 1943. “Behavior, purpose and teleology”.
Philosophy of science 10 (1): 18–24.

Rowe, Robert. 1993. Interactive Music Systems: Machine Listening and Composing. Cambridge, MA: MIT
Press.

Schaeffer, Pierre. 2017. Treatise on Musical Objects: An Essay across Disciplines. Vol. 20. Univ of
California Press.

Simonite, Tom. 2017. “A ‘Neurographer’ Puts the Art in Artificial Intelligence”. Wired ().
https://www.wired.com/story/neurographer-puts-the-art-in-artificial-intelligence/.

SweetwaterSound. 2014. Richard Devine Interview - The Sweetwater Minute, Vol. 256. YouTube.
https://www.youtube.com/watch?v=K_5mb_utKdM.

Tremblay, Pierre Alexandre, et al. 2019. “From collections to corpora: Exploring sounds through fluid
decomposition”. In International Computer Music Conference and New York City Electroacoustic
Music Festival.

Wang, Ge. 2019. Humans in the Loop: The Design of Interactive AI Systems.
https://hai.stanford.edu/blog/humans-loop-design-interactive-ai-systems.

Weinberg, Gil. 2005. “Interconnected musical networks: Toward a theoretical framework”. Computer Music
Journal 29 (2): 23–39.

78

https://www.wired.com/story/neurographer-puts-the-art-in-artificial-intelligence/
https://www.youtube.com/watch?v=K_5mb_utKdM
https://hai.stanford.edu/blog/humans-loop-design-interactive-ai-systems

Appendices
The code base used in these projects is more extensive than can fit in the appendicies. Only the most
relevant code is provided here.

A Code for SynthMIRNRT

code/SynthMIRNRT.sc
1 SynthMIRNRT {

2 // classvar uniqueID = 1000;

3 var params;

4 var time_counter;

5 var pre_wait , post_wait;

6 var input_msgs;

7 var input_pts;

8 var synthDef_to_analyze;

9 var osc_actions;

10 var save_path;

11 var n_features = 53; // in first synth!

12 var array_to_csv;

13 var analysisfilename;

14 var n_frames;

15 var analysisfilename_melbands;

16 var analysisfilename_chroma;

17 var numChans;

18 var labels_array;

19 var n_active_params;

20

21 *new {

22 arg params_ , save_path_ , synthDef_to_analyze ,pre_wait_ = 0.1, post_wait_ = 0.1,

audio_path = nil , action = nil , verbose = false , numChans_ = 1, csv_data_points

= nil;

23 ^super.new.init(params_ , save_path_ , synthDef_to_analyze ,pre_wait_ ,post_wait_ ,

audio_path , action , verbose , numChans_ , csv_data_points);

24 }

25

26 makeSynthDefs {

27 arg numChans;

28 SynthDef (\ analysis_log_nrt ,{

29 arg audioInBus , analysis_buf , t_logger = 0;

30 var ogsig = In.ar(audioInBus ,numChans);

31 var sig = Mix(ogsig) * numChans.reciprocal;

32 var fft = FFT(LocalBuf (1024) ,sig);

33 var mfcc = FluidMFCC.kr(sig ,40);

34 var spec = FluidSpectralShape.kr(sig);

35 var pitch = FluidPitch.kr(sig);

36 var loudness = FluidLoudness.kr(sig);

37 var vector = mfcc ++ spec ++ pitch ++ /* chroma ++*/ loudness ++ [

38 A2K.kr(ZeroCrossing.ar(sig)),

39 SensoryDissonance.kr(fft)

40];

41 Logger.kr(vector ,t_logger ,analysis_buf);

42 Out.ar(0,ogsig);

43 }).writeDefFile;

44

45 SynthDef (\ analysis_log_nrt_melbands ,{

46 arg audioInBus , analysis_buf , t_logger = 0;

47 var sig = Mix(In.ar(audioInBus ,numChans)) * numChans.reciprocal;

48 var melBands = FluidMelBands.kr(sig ,40, maxNumBands :40);

49 Logger.kr(melBands ,t_logger ,analysis_buf);

50 //Out.ar(0,sig);

79

51 }).writeDefFile;

52

53 SynthDef (\ analysis_log_nrt_chroma ,{

54 arg audioInBus , analysis_buf , t_logger = 0;

55 var sig = Mix(In.ar(audioInBus ,numChans)) * numChans.reciprocal;

56 var chroma = Chromagram.kr(FFT(LocalBuf (1024) ,sig) ,1024);

57 Logger.kr(chroma ,t_logger ,analysis_buf);

58 //Out.ar(0,sig);

59 }).writeDefFile;

60 }

61

62 create_inputs_from_csv {

63 arg path , verbose;

64 var csv = CSVFileReader.readInterpret(path ,true ,true); // these should be normalized

because it will use the scalars you passed to scale them !!!!!!!!

65

66 if(n_active_params != csv [0].size ,{

67 "Number of active params is not equal to the number of dimensions in the csv

file .". error;

68 });

69

70 n_frames = csv.size;

71

72 input_msgs = List.new;

73 input_pts = List.new;

74

75 /*

76 csv.postln;

77 csv.shape.postln ;*/

78

79 csv.do({

80 arg input_pt;

81 var sub_array = List.new;

82 var input_pt_sub_array = List.new;

83 var input_idx = 0;

84

85 sub_array.addAll ([\n_set ,1001]);

86

87 params.do({

88 arg param , i;

89 var name = param [0];

90 var val;

91

92 if(param [1]. isKindOf(ControlSpec),{

93 var normed_val = input_pt[input_idx];

94 val = param [1]. map(normed_val);

95 input_idx = input_idx + 1;

96 },{

97 val = param [1];

98 });

99

100 sub_array.addAll ([name ,val]);

101 input_pt_sub_array.add(val);

102 });

103

104 input_pts.add(input_pt_sub_array);

105

106 input_msgs.add([time_counter ,sub_array.asArray]);

107 time_counter = time_counter + pre_wait;

108 input_msgs.add([time_counter ,[\n_set ,1000 ,\ t_logger ,1]]);

109 input_msgs.add([time_counter ,[\n_set ,1002 ,\ t_logger ,1]]);

110 input_msgs.add([time_counter ,[\n_set ,1003 ,\ t_logger ,1]]);

111 time_counter = time_counter + post_wait;

112

113 if(verbose ,{ sub_array.postln });

80

114 });

115

116 ^input_pts.size;

117 }

118

119 /* *nextUniqueID {

120 uniqueID = uniqueID + 1;

121 ^uniqueID;

122 }*/

123

124 init {

125 arg params_ , save_path_ , synthDef_to_analyze ,pre_wait_ = 0.1, post_wait_ = 0.1,

audio_path_ = nil , action = nil , verbose = false , numChans_ = 1, csv_data_points

= nil;

126 var log = ArrayToCSV.open(save_path_ +/+" log.csv");

127 var synthDef_to_analyze_name;

128 // n_features = 40;//88;//92;//104;

129

130 params = params_;

131 pre_wait = pre_wait_;

132 post_wait = post_wait_;

133 save_path = save_path_;

134 numChans = numChans_;

135

136 this.makeSynthDefs(numChans);

137

138 if(synthDef_to_analyze.isSymbolWS ,{

139 synthDef_to_analyze_name = synthDef_to_analyze;

140 },{

141 synthDef_to_analyze.writeDefFile;

142 synthDef_to_analyze_name = synthDef_to_analyze.name;

143 });

144

145 time_counter = 0.0;

146 analysisfilename = "/tmp/% _nrt_analysis_buf_ %.wav". format(Date.localtime.stamp ,

UniqueID.next);

147 analysisfilename_melbands = "/tmp/% _nrt_analysis_buf_melbands_ %.wav". format(Date.

localtime.stamp ,UniqueID.next);

148 analysisfilename_chroma = "/tmp/% _nrt_analysis_buf_chroma_ %.wav". format(Date.

localtime.stamp ,UniqueID.next);

149

150 log.writeLine ([" SynthDef name: %". format(synthDef_to_analyze_name.asString)]);

151 log.writeLine ([" pre_wait",pre_wait]);

152 log.writeLine ([" post_wait",post_wait]);

153 log.writeLine ([" save_path",save_path]);

154 log.writeLine ([" audio_path",audio_path_]);

155

156 n_active_params = params.select ({arg param; param [1]. isKindOf(ControlSpec)}).size;

157

158 if(csv_data_points.isNil ,{

159 log.writeLine ([" name","min","max","warp","step"," n_steps_for_analysis "]);

160 n_frames = 1;

161 params.do({

162 arg param;

163 var is_active = param [1]. isKindOf(ControlSpec);

164 if(is_active ,{

165 n_frames = n_frames * param [2];

166 log.writeLine ([param[0],param [1]. minval ,param [1]. maxval ,param [1]. warp.

class.asString ,param [1].step ,param [2]]);

167 },{

168 log.writeLine ([param[0],param [1]]);

169 });

170 });

171 this.create_input_msgs(verbose);

172 },{

81

173 log.writeLine ([" params taken from csv file:", csv_data_points]);

174 log.writeLine ([" name","min","max","warp","step "]);

175 params.do({

176 arg param;

177 var is_active = param [1]. isKindOf(ControlSpec);

178 if(is_active ,{

179 log.writeLine ([param[0],param [1]. minval ,param [1]. maxval ,param [1]. warp.

class.asString ,param [1]. step]);

180 },{

181 log.writeLine ([param[0],param [1]]);

182 });

183 });

184 this.create_inputs_from_csv(csv_data_points ,verbose);

185 });

186

187 labels_array = List.new;

188 labels_array.addAll(params.collect ({

189 arg param_array;

190 // "param array: %". format(param_array).postln;

191 param_array [0]. asString;

192 }));

193

194 labels_array.addAll (40. collect ({

195 arg i_;

196 "mfcc %". format(i_.asString.padLeft (2 ,"0"));

197 }));

198

199 labels_array.addAll ([

200 "spec_centroid",

201 "spec_spread",

202 "spec_skewness",

203 "spec_kurtosis",

204 "spec_rolloff",

205 "spec_flatness",

206 "spec_crest",

207 "pitch",

208 "pitch_confidence",

209 "loudness",

210 "loudness_truepeak",

211 "zero_crossing",

212 "sensory_dissonance"

213]);

214

215 labels_array.addAll (40. collect ({

216 arg i_;

217 "melband %". format(i_.asString.padLeft (2 ,"0"));

218 }));

219

220 labels_array.addAll (12. collect ({

221 arg i_;

222 "chromagram %". format(i_.asString.padLeft (2 ,"0"));

223 }));

224

225 log.writeLine ([" labels of columns :"]);

226 labels_array.do({

227 arg label , i;

228 log.writeLine ([i,label]);

229 });

230

231 log.close;

232

233 osc_actions = [

234 [0.0 ,[\ b_alloc ,0,n_frames.asInteger ,n_features.asInteger]],

235 [0.0 ,[\ b_alloc ,1,n_frames.asInteger ,40]] ,// mel bands

236 [0.0 ,[\ b_alloc ,2,n_frames.asInteger ,12]] ,// chroma

82

237 [0.0 ,[\s_new , \analysis_log_nrt , 1000, 0, 0, // name , id , addAction , addTarget

238 \audioInBus ,11, // start args

239 \analysis_buf ,0

240]],

241 [0.0 ,[\s_new , \analysis_log_nrt_melbands , 1002, 0, 0, // name , id , addAction ,

addTarget

242 \audioInBus ,11, // start args

243 \analysis_buf ,1

244]],

245 [0.0 ,[\s_new , \analysis_log_nrt_chroma , 1003, 0, 0, // name , id, addAction ,

addTarget

246 \audioInBus ,11, // start args

247 \analysis_buf ,2

248]],

249 [0.0 ,[\s_new ,synthDef_to_analyze_name ,1001,0,0,

250 \outBus ,11

251]],

252];

253

254 osc_actions = osc_actions ++ input_msgs; // insert them all

255

256 // time_counter = time_counter + 1; // i dont think i need this , i’m trying to remove

extraneous time so that i can analyze the file ...

257 osc_actions = osc_actions ++ [

258 [time_counter ,[\ b_write ,0,analysisfilename , "WAV", "float "]],

259 [time_counter ,[\ b_write ,1, analysisfilename_melbands , "WAV", "float"]],

260 [time_counter ,[\ b_write ,2, analysisfilename_chroma , "WAV", "float"]],

261 [time_counter ,[\c_set , 0, 0]]

262];

263

264 // osc_actions.dopostln;

265 // input_msgs.postln;

266 // input_pts.postln;

267 this.runAnalysis(audio_path_ ,action ,verbose);

268 }

269

270 create_input_msgs {

271 arg verbose;

272 input_msgs = List.new;

273 input_pts = List.new;

274 this.create_input_msgs_r(params ,0,nil , verbose);

275 }

276

277 create_input_msgs_r {

278 arg params_ , layer = 0, current_frame = nil , verbose;

279

280 /* "create input msg r:". postln;

281 layer.postln;

282 current_frame.postln;

283 "". postln ;*/

284

285 if(layer < params_.size ,{

286 params_[layer][2]. do({

287 arg i;

288 var i_n = params_[layer][1]. map(i.linlin(0,params_[layer][2]-1,0,1));

289

290 if(current_frame.isNil ,{

291 current_frame = Array.newClear(params_.size);

292 });

293 current_frame[layer] = i_n;

294 this.create_input_msgs_r(params_ ,layer + 1, current_frame.copy , verbose);

295 });

296 },{

297 var sub_array = List.new;

298 sub_array.addAll ([\n_set ,1001]);

83

299

300 params_.do({

301 arg param , j;

302 sub_array.addAll ([param[0], current_frame[j]]);

303 });

304

305 sub_array = sub_array.asArray;

306

307 input_msgs.add([time_counter ,sub_array]);

308 time_counter = time_counter + pre_wait;

309 input_msgs.add([time_counter ,[\n_set ,1000 ,\ t_logger ,1]]);

310 input_msgs.add([time_counter ,[\n_set ,1002 ,\ t_logger ,1]]);

311 input_msgs.add([time_counter ,[\n_set ,1003 ,\ t_logger ,1]]);

312 time_counter = time_counter + post_wait;

313

314 input_pts.add(current_frame);

315

316 if(verbose ,{" sub array: %". format(sub_array).postln });

317 });

318 }

319

320 runAnalysis {

321 arg audio_path , action , verbose;

322 var out_file_path = "/dev/null";

323

324 if(audio_path.notNil ,{

325 out_file_path = audio_path;

326 });

327

328 // osc_actions.dopostln;

329

330 // "out file path: %". format(out_file_path).postln;

331

332 // "params before nrt: %". format(params).postln;

333 Score.recordNRT(

334 osc_actions ,

335 outputFilePath:out_file_path ,

336 // headerFormat :"wav",

337 options:ServerOptions.new.numOutputBusChannels_(numChans),

338 // duration:time_counter + 2,

339 action :{

340 // analysisfilename.postln;

341 SoundFile.use(analysisfilename ,{

342 arg sf;

343 var array;

344

345 array_to_csv = ArrayToCSV.open(save_path +/+" analysis.csv");

346

347 array = FloatArray.newClear(sf.numFrames * sf.numChannels);

348

349 sf.readData(array);

350 array = array.clump(n_features);

351

352 // "first sf done". postln;

353

354 SoundFile.use(analysisfilename_melbands ,{

355 arg sf_mb;

356 var array_mb = FloatArray.newClear(sf_mb.numFrames * sf_mb.

numChannels);

357

358 sf_mb.readData(array_mb);

359 array_mb = array_mb.clump (40); // n mel bands;

360

361 // "second sf done". postln;

362

84

363 SoundFile.use(analysisfilename_chroma ,{

364 arg sf_ch;

365

366 var array_ch = FloatArray.newClear(sf_ch.numFrames * sf_ch.

numChannels);

367

368 sf_ch.readData(array_ch);

369 array_ch = array_ch.clump (12); // chroma

370

371 // input points

372 // "params: %". format(params).postln;

373

374 array_to_csv.writeLine(labels_array);

375

376 /* "array: %". format(array).postln;

377 "input points: %". format(input_pts).postln;

378 //" frame: %". format(frame).postln;

379 "array_mb: %". format(array_mb).postln;

380 "array_ch: %". format(array_ch).postln ;*/

381 array.do({

382 arg frame , index;

383 var line = input_pts[index] ++ frame ++ array_mb[index] ++

array_ch[index];

384

385 /* index.postln;

386 line.postln;

387 line.size.postln;

388 "". postln ;*/

389

390 array_to_csv.writeLine(line);

391 });

392

393 array_to_csv.close;

394

395 // INDICES (you have to add the number of input params to get

the right csv index offset):

396 // mfccs 00-39

397 // spec 40-46

398 // pitch 47-48

399 // loudness 49-50

400 // zeroc 51

401 // sensdis 52

402 // mels 53-92

403 // chroma 93 -104

404

405 action.value;

406 });

407 });

408 });

409 });

410 }

411 }

B Code for Section 3.2.1

code/0/NeuralNetwork.sc

1 NeuralNetworkLayer {

2 classvar econst = 2.71828;

3 var parent , <size , <weights , biases , <>values , activation , previousLayer , <>error;

4

5 *new {

6 arg parent , size , previousLayer , activation = "relu";

7 ^super.new.init(parent , size , previousLayer , activation);

85

8 }

9

10 init {

11 arg parent_ , size_ , previousLayer_ , activation_ = "relu";

12 parent = parent_;

13 size = size_;

14 activation = activation_;

15 previousLayer = previousLayer_;

16

17 values = Matrix.fill(size ,1 ,{0});

18

19 if(previousLayer.notNil ,{

20 // this is not the input layer

21 weights = Matrix.fill(size ,previousLayer.size ,{1.0. rand});

22 biases = Matrix.fill(size ,1 ,{0.5. rand2});

23 });

24 }

25

26 feedForward {

27 values = ((weights * previousLayer.values) + biases).collect ({

28 arg val;

29 this.activationFunc(val);

30 });

31 ^values;

32 }

33

34 activationFunc {

35 arg val;

36 activation.switch(

37 "relu",{

38 //" relu val: %". format(val).postln;

39 ^max(0,val);

40 },

41 "sigmoid",{

42 ^(1+ econst.pow(val * -1)).reciprocal;

43 },

44 "linear",{

45 ^val;

46 },

47 "tanh",{

48 ^tanh(val);

49 }

50);

51 }

52

53 // https :// towardsdatascience.com/activation -functions -neural -networks -1 cbd9f8d91d6

54 derivativeActivationFunc {

55 arg val;

56 activation.switch(

57 "relu",{

58 var return;

59 //"d relu val: %". format(val).postln;

60 if(val < 0,{return = 0.0} ,{ return = 1.0});

61 ^return;

62 },

63 "sigmoid",{

64 ^(val * (1 - val));

65 },

66 "linear",{

67 ^1.0;

68 },

69 "tanh",{

70 ^(1-val.pow(2))

71 }

72);

86

73 }

74

75 backProp {

76 var gradient = values.collect ({

77 arg val , row , col;

78 this.derivativeActivationFunc(val) * error.at(row ,col) * parent.learningRate;

79 });

80

81 weights = weights + (gradient * previousLayer.values.flop);

82 biases = biases + gradient;

83 }

84 }

85

86 NeuralNetwork {

87 var inputSize , layers , <learningRate;

88

89 *new {

90 arg inputSize , learningRate = 0.1;

91 ^super.new.init(inputSize ,learningRate);

92 }

93

94 init {

95 arg inputSize_ , learningRate_ = 0.1;

96 inputSize = inputSize_;

97 learningRate = learningRate_;

98

99 layers = List.new;

100 layers.add(NeuralNetworkLayer(this ,inputSize));

101 }

102

103 addLayer {

104 arg size , activation;

105 layers.add(NeuralNetworkLayer(this ,size ,layers.last ,activation));

106 }

107

108 feedForward {

109 arg in;

110 var out;

111 layers [0]. values_(Matrix.withFlatArray(in.size ,1,in));

112

113 layers [1..]. do({

114 arg layer;

115 out = layer.feedForward;

116 });

117

118 ^out;

119 }

120

121 train1 {

122 arg inputs , targets;

123 var return_e;

124 targets = Matrix.withFlatArray(targets.size ,1,targets);

125

126 // calc errors

127 layers.last.error = targets - this.feedForward(inputs);

128 ((layers.size -2) ..1).do({

129 arg layerI;

130 var layer = layers[layerI];

131 layer.error = layers[layerI + 1]. weights.flop * layers[layerI + 1]. error;

132 });

133

134 // back prop

135 ((layers.size -1) ..1).do({

136 arg layerI;

137 layers[layerI]. backProp;

87

138 });

139 return_e = layers.last.error.flatten;

140 // return_e.postln;

141 ^(return_e.pow(2).sum / return_e.size);

142 }

143

144 train {

145 arg trainingData , nEpochs;

146 nEpochs.do({

147 arg epoch;

148 var err = 0;

149 trainingData.scramble.do({

150 arg trainingPair;

151 err = err + this.train1(trainingPair [0], trainingPair [1]);

152 });

153 "epoch: %". format(epoch).postln;

154 "loss: %\n". format(err).postln;

155 });

156 }

157

158 trainAndTest {

159 arg trainingData , trainPercent;

160 var trainingN = (trainingData.size * trainPercent).floor.asInteger;

161 var trainingSet = trainingData [0..(trainingN -1)];

162 var testingSet = trainingData[trainingN ..];

163 var nCorrect = 0;

164 this.train(trainingSet);

165 testingSet.do({

166 arg testingPair;

167 if(this.feedForward(testingPair [0]).maxIndex == testingPair [1]. maxIndex ,{

168 nCorrect = nCorrect + 1;

169 });

170 });

171 ^(nCorrect / testingSet.size);

172 }

173 }

code/0/FeedLightMode.sc

1 FeedLightMaster {

2 var modes , currentMode , <>running , turnOnWithOnset /*, >onsetFunc = nil*/;

3

4 *new {

5 arg modesArray;

6 ^super.new.init(modesArray);

7 }

8

9 isRunning {

10 ^running;

11 }

12

13 init {

14 arg modesArray_;

15 running = true;

16 turnOnWithOnset = false;

17 modes = modesArray_ ? [];

18 }

19

20 addMode {

21 arg feedLightMode;

22 modes = modes.add(feedLightMode);

23 }

24

25 setMode {

26 arg m;

88

27 if(currentMode != m,{

28 // we need to change the mappings!

29 currentMode = m;

30 //" current mode: %". format(currentMode).postln;

31 });

32 }

33

34 shuffleLightMappings {

35 arg m;

36 if(running ,{

37 modes[(m ? currentMode).asInteger]. shuffleLightMappings;

38 });

39 }

40

41 turnOnWithOnset_ {

42 arg bool;

43 if(bool ,{

44 running = false;

45 turnOnWithOnset = true;

46 },{

47 running = true;

48 turnOnWithOnset = false;

49 });

50 }

51

52 onsetTrigger {

53 if(turnOnWithOnset ,{

54 // onsetFunc.action(this);

55 running = true;

56 turnOnWithOnset = false;

57 });

58 }

59

60 getRGBWM {

61 arg light , data , m;

62 var gm;

63

64 if(running ,{

65 gm = modes[m ? currentMode]. lightToGroup[light];

66

67 if(gm == \null ,{

68 ^[0,0,0,0,0];

69 },{

70 ^gm.getRGBWM(data);

71 });

72 },{

73 ^[0,0,0,0,0];

74 });

75 }

76 }

77

78 FeedLightMode {

79 var <groupedMappings , <lightToGroup , nLights , >bAtLeastOneLight = true , >

probOfAssigningLight = 0.5;

80

81 *new {

82 arg nLights , groupsArray;

83 ^super.new.init(nLights ,groupsArray);

84 }

85

86 init {

87 arg nLights_ ,groupsArray_;

88 nLights = nLights_;

89

90 groupedMappings = groupsArray_ ? [];

89

91

92 lightToGroup = Dictionary.newFrom(Array.fill(nLights ,{arg i; [i,\null]}).flatten);

93

94 this.shuffleLightMappings;

95 }

96

97 addGroup {

98 arg group;

99 groupedMappings = groupedMappings.add(group);

100 this.shuffleLightMappings;

101 ^this;

102 }

103

104 addGroups {

105 arg arrayOfGroups;

106 arrayOfGroups.do({

107 arg group;

108 this.addGroup(group);

109 });

110 }

111

112 shuffleLightMappings {

113 var keyValuePairs = Array.fill(nLights ,{

114 arg i;

115 var fill;

116 if(probOfAssigningLight.coin ,{ // probability of true

117 fill = groupedMappings.choose;

118 },{

119 fill = \null;

120 });

121 [i,fill];

122 });

123

124 if(bAtLeastOneLight ,{

125 keyValuePairs.choose [1] = groupedMappings.choose;

126 });

127

128 lightToGroup = Dictionary.newFrom(keyValuePairs.flatten);

129 }

130 }

131

132 FeedLightGroup {

133 var <maps ,volSpec;

134

135 *new {

136 arg mappings;

137 ^super.new.init(mappings);

138 }

139

140 init {

141 arg mappings;

142 maps = Dictionary.new;

143 mappings.clump (4).do({

144 arg arrayOf4;

145 this.addMapping (* arrayOf4);

146 });

147 }

148

149 addMapping {

150 arg mirParam , mirSpec , lightParam , lightSpec;

151 maps.put(lightParam ,(

152 mirParam:mirParam ,

153 mirSpec:mirSpec ,

154 lightSpec:lightSpec

155));

90

156 ^this;

157 }

158

159 getRGBWM {

160 arg data , fromNormed = false;

161 //var color = ColorRGBHSV.newRGB (0,0,0);

162 var color = Color (0,0,0);

163 var white = 0;

164 maps.keysValuesDo ({

165 arg lightParam , mappingData;

166 lightParam.switch(

167 \r,{color.red_(this.unmapmap(data ,mappingData ,fromNormed))},

168 \g,{color.green_(this.unmapmap(data ,mappingData ,fromNormed))},

169 \b,{color.blue_(this.unmapmap(data ,mappingData ,fromNormed))},

170 \w,{white = this.unmapmap(data ,mappingData ,fromNormed)},

171 \h,{color.hue_(this.unmapmap(data ,mappingData ,fromNormed))},

172 \s,{color.sat_(this.unmapmap(data ,mappingData ,fromNormed))},

173 \v,{color.val_(this.unmapmap(data ,mappingData ,fromNormed))}

174);

175 });

176

177 //color.postln;

178

179 ^[

180 color.red * 255,

181 color.green * 255,

182 color.blue * 255,

183 white * 255,

184 color.val * 255

185];

186 }

187

188 myAmpSpec {

189 arg amp;

190 ^amp.ampdb.linlin (-70,-10,0,1);

191 }

192

193 unmapmap {

194 arg data , mappingData , fromNormed;

195 if(mappingData.mirParam == \constant ,{

196 ^mappingData.mirSpec;

197 },{

198 var unmappedMirParam , mappedLightParam;

199 var spec = mappingData.mirSpec;

200 if(fromNormed ,{

201 if(spec == \myAmp ,{

202 unmappedMirParam = this.myAmpSpec(data.getParam(mappingData.mirParam ,

true));

203 },{

204 unmappedMirParam = data.getParam(mappingData.mirParam ,true);

205 });

206 },{

207 if(spec == \myAmp ,{

208 unmappedMirParam = this.myAmpSpec(data.getParam(mappingData.mirParam ,

false));

209 },{

210 unmappedMirParam = spec.unmap(data.getParam(mappingData.mirParam ,false))

;

211 });

212 });

213 mappedLightParam = mappingData.lightSpec.map(unmappedMirParam);

214

215 /* "mir param: %". format(mappingData.mirParam).postln;

216 "raw param: %". format(data[mappingData.mirParam]).postln;

217 "mir spec: %". format(mappingData.mirSpec).postln;

91

218 "light spec: %". format(mappingData.lightSpec).postln;

219 "mapped param: %\n". format(mappedLightParam).postln ;*/

220

221 ^mappedLightParam;

222 });

223 }

224 }

225

226 // ColorRGBHSV {

227 // var <r = 0, <g = 0, <b = 0, <h = 0, <s = 0, <v = 0;

228 // // r, g, b, s, and v are 0 to 1

229 // // h is 0 to 1

230 // *new {

231 // ^super.new;

232 // }

233 //

234 // *newRGB {

235 // arg r, g, b;

236 // ^super.new.setRGB(r,g,b);

237 // }

238 //

239 // *newHSV {

240 // arg h, s, v;

241 // ^super.new.setHSV(h,s,v);

242 // }

243 //

244 // setRGB {

245 // arg r_, g_, b_;

246 // r = r_;

247 // g = g_;

248 // b = b_;

249 // # h, s, v = ColorRGBHSV.rgbToHsv(r,g,b);

250 // }

251 //

252 // setHSV {

253 // arg h_, s_, v_;

254 // h = h_;

255 // s = s_;

256 // v = v_;

257 // # r, g, b = ColorRGBHSV.hsvToRgb(h,s,v);

258 // }

259 //

260 // r_ {

261 // arg r_;

262 // this.setRGB(r_ ,g,b);

263 // }

264 //

265 // g_ {

266 // arg g_;

267 // this.setRGB(r,g_,b);

268 // }

269 //

270 // b_ {

271 // arg b_;

272 // }

273 //

274 // h_ {

275 // arg h_;

276 // }

277 //

278 // s_ {

279 // arg s_;

280 // }

281 //

282 // v_ {

92

283 // arg v_;

284 // }

285 //

286 // *rgbToHsv {

287 // arg r, g, b;

288 // var min , delta , h, s, v;

289 // min = [r,g,b]. minItem;

290 // v = [r,g,b]. maxItem;

291 // delta = v - min;

292 // if(v != 0,{

293 // s = delta / v;

294 // },{

295 // s = 0;

296 // h = 0;

297 // ^[h,s,v];

298 // });

299 //

300 // if(r == v,{

301 // h = (g-b) / delta;

302 // },{

303 // if(g == v,{

304 // h = 2 + ((b-r) / delta);

305 // },{

306 // h = 4 + ((r-g) / delta);

307 // });

308 // });

309 // h = h * 60;

310 // if(h < 0,{h = h + 360});

311 // h = h / 360;

312 // "h,s,v: %". format ([h,s,v]).postln;

313 // ^[h,s,v];

314 // }

315 //

316 // *hsvToRgb {

317 // arg h, s, v;

318 // var r, g, b, i,f,p,q,t;

319 // i = (h * 6).floor;

320 // f = (h * 6) - i;

321 // p = v * (1 - s);

322 // q = v * (1 - (f * s));

323 // t = v * (1 - ((1 - f) * s));

324 // [i,f,p,q,t]. postln;

325 // (i % 6).postln;

326 // (i % 6).asInteger.switch(

327 // 0,{

328 // r = v;

329 // g = t;

330 // b = p;

331 // },

332 // 1,{

333 // r = q;

334 // g = v;

335 // b = p;

336 // },

337 // 2,{

338 // r = p;

339 // g = v;

340 // b = t;

341 // },

342 // 3,{

343 // r = p;

344 // g = q;

345 // b = v;

346 // },

347 // 4,{

93

348 // r = t;

349 // g = p;

350 // b = v;

351 // },

352 // 5,{

353 // r = v;

354 // g = p;

355 // b = q;

356 // }

357 //);

358 // "r,g,b: %". format ([r,g,b]).postln;

359 // ^[r,g,b];

360 // }

361 // }

code/0/MyDMXLight.sc

1 MyDMXColor {

2 var value = 0, task , updateTime , function , kBus , server , <parent;

3

4 *new {

5 arg server , updateTime , parent;

6 ^super.new.init(server , updateTime ,parent);

7 }

8

9 init {

10 arg server_ , updateTime_ , parent_;

11 server = server_;

12 updateTime = updateTime_;

13 parent = parent_;

14

15 kBus = Bus.control(server);

16 }

17

18 value {

19 ^value;

20 }

21

22 setValue {

23 arg v;

24 this.stopTask(v);

25 task = Task({

26 inf.do({

27 value = v;

28 updateTime.wait;

29 });

30 },SystemClock).play;

31 }

32

33 setValueFrequently {

34 arg v;

35 this.stopTask(v);

36 //value = v;

37 }

38

39 reset {

40 arg to = 0;

41 task.stop;

42 // function.free;

43 if(function.isPlaying ,{ function.free});

44 kBus.set(to);

45 // server.sync;

46 value = to;

47 }

48

94

49 stopTask {

50 arg resetTo = 0;

51 parent.parent.pauseOtherControls;

52 this.reset(resetTo);

53 }

54

55 fadeToValue {

56 arg targetVal , fadeTime , curve = 1;

57 var n, startVal;

58

59 startVal = value;

60

61 n = (fadeTime / updateTime).floor;

62

63 /* "update time: %". format(updateTime).postln;

64 "start val: %". format(value).postln;

65 "target val: %". format(targetVal).postln;

66 "fade time: %". format(fadeTime).postln;

67 "curve: %". format(curve).postln;

68 "n: %". format(n).postln ;*/

69

70 if(n == 0,{

71 this.setValue(targetVal);

72 },{

73 this.stopTask(startVal);

74

75 task = Task({

76 n.do({

77 arg i;

78 var w;

79 w = i.linlin (0.0,n-1 ,0.0 ,1.0);

80 w = pow(w,curve);

81 /* "w: %". format(w).postln;

82 "target val: %". format(targetVal).postln;

83 "start val: %". format(startVal).postln ;*/

84 value = (targetVal * w) + (startVal * (1-w));

85 // "value: %". format(value).postln;

86 // server.sync;

87 updateTime.wait;

88 });

89 //"--fade complete ". postln;

90 },SystemClock).play;

91 });

92 }

93

94 fadeFromTo {

95 arg startVal , targetVal , fadeTime , curve = 1;

96 var n;

97

98 n = fadeTime / updateTime;

99

100 /*" update time: %". format(updateTime).postln;

101 "start val: %". format(value).postln;

102 "target val: %". format(targetVal).postln;

103 "fade time: %". format(fadeTime).postln;

104 "curve: %". format(curve).postln;

105 "n: %". format(n).postln ;*/

106

107

108 this.stopTask(startVal);

109

110 task = Task({

111 n.do({

112 arg i;

113 var w;

95

114 w = i.linlin (0.0,n-1 ,0.0 ,1.0);

115 w = pow(w,curve);

116 /* "w: %". format(w).postln;

117 "target val: %". format(targetVal).postln;

118 "start val: %". format(startVal).postln ;*/

119 value = (targetVal * w) + (startVal * (1-w));

120 //" value: %". format(value).postln;

121 // server.sync;

122 updateTime.wait;

123 });

124 //"--fade complete ". postln;

125 },SystemClock).play;

126 }

127

128 toggle {

129 arg onTime , offTime , onValue_;

130 var onValue = onValue_ ? 255;

131 this.stopTask;

132 task = Task({

133 inf.do({

134 var wt;

135 if(value == 0,{

136 // turn it on

137 value = onValue;

138 wt = onTime;

139 },{

140 // turn it off

141 value = 0;

142 wt = offTime;

143 });

144 // server.sync;

145 wt.wait;

146 });

147 },SystemClock).play;

148 }

149

150 toggleRandom {

151 arg onMiddle = 0.5, onStandardDeviation = 0.4, onValue_ = 255, offMiddle_ = 0.1,

offStandardDeviation_ = 0.8;

152 var offMiddle = offMiddle_ ? onMiddle;

153 var offStandardDeviation = offStandardDeviation_ ? onStandardDeviation;

154 var onValue = onValue_ ? 255;

155

156 //[onMiddle , onStandardDeviation , onValue , offMiddle , offStandardDeviation]. postln;

157 // updateTime.postln;

158

159 this.stopTask;

160 task = Task({

161 inf.do({

162 var wt;

163 if(value == 0,{

164 // turn it on

165 value = onValue;

166 wt = max(gauss(onMiddle ,onStandardDeviation), updateTime);

167 },{

168 // turn it off

169 value = 0;

170 wt = max(gauss(offMiddle ,offStandardDeviation), updateTime);

171 });

172 // server.sync;

173 wt.wait;

174 });

175 },SystemClock).play;

176 }

177

96

178 runLfo {

179 arg freq , min = 0, max = 255;

180 this.stopTask ((min+max) * 0.5);

181 task = Task({

182 //var utr = updateTime.reciprocal;

183 inf.do({

184 arg i;

185 value = sin(i * updateTime * freq * 2pi).linlin(-1,1,min ,max);

186 // server.sync;

187 //value.postln;

188 updateTime.wait;

189 });

190 },SystemClock).play;

191 }

192

193 playFunc {

194 arg func;

195 this.stopTask;

196 /* "server: ".post; server.postln;

197 "func: ".post; func.postln ;*/

198 //kBus = Bus.control(server);

199 function = func.play(outbus:kBus ,fadeTime :0);

200 NodeWatcher.register(function ,true);

201 //func.postln;

202 // function.postln;

203 task = Task({

204 inf.do({

205 kBus.get({

206 arg v;

207 //v.postln;

208 value = v;

209 });

210 // server.sync;

211 updateTime.wait;

212 });

213 },SystemClock).play;

214 //task.postln;

215 }

216

217 listenToBus01 {

218 arg bus , min = 0.0, max = 255.0;

219 this.stopTask;

220 task = Task({

221 inf.do({

222 bus.get({

223 arg v;

224 //v.postln;

225 value = v.linlin (0.0,1.0 ,min ,max);

226 //value.postln;

227 });

228 updateTime.wait;

229 });

230 },SystemClock).play;

231 }

232 }

233

234 MyDMXLight {

235 var <parent , offset , <lightType , /* nValsPerLight ,*/ nValsNeeded , dataArray , /*

colorIndicies ,*/ colors , updateTime , server , adderArray , systemMasterBrightness = 1,

masterIndex = nil;//, lightTypes;

236

237 *new {

238 arg server , offset , lightType , updateTime , parent;

239 ^super.new.init(server , offset , lightType , updateTime , parent);

240 }

97

241

242 makeDataAndAdderArrays {

243 arg nVals;

244 nValsNeeded = nVals;

245 dataArray = 0.dup(nValsNeeded);

246 adderArray = Array.fill(nValsNeeded ,{arg i; i});

247 }

248

249 systemMasterBrightness_ {

250 arg b;

251 systemMasterBrightness = b;

252 }

253

254 init {

255 arg server_ , offset_ , lightType_ , updateTime_ , parent_;

256 offset = offset_;

257 server = server_;

258 lightType = lightType_;

259 updateTime = updateTime_;

260 parent = parent_;

261

262

263 /*

264

265 lightTypes:

266

267 0: Spotlight IGB -B18

268 1: Chauvet 64 RGBA

269 2: the color wheel spotlight from "circle"

270 3: the uplights from "circle" and "column"

271 4: the ones that LUL used at SXSW

272 5: the moving head spots that LUL rented for SXSW

273

274 */

275

276 colors = Dictionary.newFrom ([

277 \master ,MyDMXColor(server ,updateTime ,this)

278]);

279

280 if(lightType.isInteger ,{

281

282 case

283 {(lightType == 0) || (lightType == 1) || (lightType == 3) || (lightType == 4) ||

(lightType == 5)}{

284 colors.put(\r,MyDMXColor(server ,updateTime ,this));

285 colors.put(\g,MyDMXColor(server ,updateTime ,this));

286 colors.put(\b,MyDMXColor(server ,updateTime ,this));

287 colors.put(\w,MyDMXColor(server ,updateTime ,this));

288

289 //var nValsNeeded = [6,8,4,4,7,10][lightType];

290

291 lightType.switch(

292 0,{

293 this.makeDataAndAdderArrays (6);

294 // spotlight

295 // 255 R G B A 0

296 dataArray [0] = 255;

297 dataArray [1] = colors.at(\r);

298 dataArray [2] = colors.at(\g);

299 dataArray [3] = colors.at(\b);

300 dataArray [4] = colors.at(\w);

301 dataArray [5] = 0;

302 /* colorIndicies = Dictionary.newFrom ([

303 \r,1,

304 \g,2,

98

305 \b,3,

306 \w,4

307]);*/

308

309 // dataArray [0] = 255;

310 // dataArray [5] = 0;

311 },

312 1,{

313 // chauvet slim par 64

314 // R G B A 0 0 0 master

315 this.makeDataAndAdderArrays (8);

316 dataArray [0] = colors.at(\r);

317 dataArray [1] = colors.at(\g);

318 dataArray [2] = colors.at(\b);

319 dataArray [3] = colors.at(\w);

320 // 4

321 // 5

322 // 6

323 dataArray [7] = colors.at(\ master);

324

325 masterIndex = 7;

326 /* colorIndicies = Dictionary.newFrom ([

327 \r,0,

328 \g,1,

329 \b,2,

330 \w,3

331]);*/

332 },

333 3,{

334 // chauvet color dash batten

335 // master R G B nil nil nil nil

336 this.makeDataAndAdderArrays (4);

337 dataArray [0] = colors.at(\ master);

338 dataArray [1] = colors.at(\r);

339 dataArray [2] = colors.at(\g);

340 dataArray [3] = colors.at(\b);

341

342 masterIndex = 0;

343 },

344 4,{

345 this.makeDataAndAdderArrays (7);

346 // the flood ones LUL rented for SXSW

347 dataArray [0] = colors.at(\r);

348 dataArray [1] = colors.at(\g);

349 dataArray [2] = colors.at(\b);

350 dataArray [3] = 0;

351 dataArray [4] = colors.at(\w); // actually amber

352 dataArray [5] = 0;

353 dataArray [6] = colors.at(\ master);

354

355 masterIndex = 6;

356 },

357 5,{

358 // the pin ones LUL rented for SXSW

359 this.makeDataAndAdderArrays (10);

360 dataArray [0] = 0;

361 dataArray [1] = 0;

362 dataArray [2] = colors.at(\r);

363 dataArray [3] = colors.at(\g);

364 dataArray [4] = colors.at(\b);

365 dataArray [5] = colors.at(\w);

366 dataArray [6] = 255;

367 dataArray [7] = colors.at(\ master);

368 dataArray [8] = 0;

369 dataArray [9] = 0;

99

370

371 masterIndex = 7;

372 });

373 this.setMasterLevel (255);

374 }

375 {lightType == 2}{

376 // LFS -75DMX

377 // master 255 0 colorWheel

378 this.makeDataAndAdderArrays (4);

379

380 colors.put(\colorWheel ,MyDMXColor(server ,updateTime ,this));

381 dataArray [0] = colors.at(\ master);

382 dataArray [1] = 255;

383 dataArray [3] = colors.at(\ colorWheel);

384

385 masterIndex = 0;

386 };

387 },{

388 // light type is not in , check if it is array (it should be)

389 if(lightType.isArray ,{

390 this.makeDataAndAdderArrays(lightType.size);

391 lightType.do({

392 arg param , i;

393 if(param.isNumber.not ,{

394 var p = MyDMXColor(server ,updateTime ,this);

395 colors.put(param ,p);

396 dataArray[i] = p;

397 if(param == \master ,{

398 masterIndex = i;

399 });

400 },{

401 // param is not a symbol so it must be a const

402 dataArray[i] = param;

403 });

404 });

405 },{

406 // light type is not array or int

407 Error("Light Type must be int (for preset) or array (for custom dmx channel

ordering)").throw;

408 })

409 });

410 ^[this ,nValsNeeded];

411 }

412

413 getTupleForMockUp {

414 var tuple , masterLevel;

415 tuple = (

416 r:colors.at(\r).value ,

417 g:colors.at(\g).value ,

418 b:colors.at(\b).value ,

419 w:colors.at(\w).value

420);

421

422 masterLevel = (colors.at(\ master).value / 255) * systemMasterBrightness;

423 tuple.r = (tuple.r * masterLevel).floor;

424 tuple.g = (tuple.g * masterLevel).floor;

425 tuple.b = (tuple.b * masterLevel).floor;

426 tuple.w = (tuple.w * masterLevel).floor;

427

428 ^tuple;

429 }

430

431 getOffset {

432 ^offset;

433 }

100

434

435 getAdderArray {

436 ^adderArray;

437 }

438

439 getDataArray {

440 var sendArray;

441 // sendArray = 0.dup(nValsPerLight);

442

443 /* sendArray = dataArray.value ;*/

444 sendArray = dataArray.collect ({

445 arg color;

446 color.value;

447 });

448

449 /* [\r,\g,\b,\w].do({

450 arg k; // key is a symbol of the color , value is the MyDMXColor class instance

451 var v = colors.at(k);

452 sendArray.put(colorIndicies.at(k),v.getValue);

453 });*/

454

455 /* lightType.switch(

456 0,{

457 // spotlight

458 sendArray [0] = 255;

459 masterLevel = masterLevel / 255;

460 sendArray = (sendArray * [1,masterLevel ,masterLevel ,masterLevel ,masterLevel ,1,1,1]).

round;

461 },

462 1,{

463 // chauvet

464 // sendArray = dataArray;

465 sendArray [7] = masterLevel;

466 });*/

467

468 // do this to control master on the spotlight thing

469

470 if(masterIndex.isNil ,{

471 var masterLevel = (colors.at(\ master).value / 255) * systemMasterBrightness;

472 sendArray = (sendArray * [1,masterLevel ,masterLevel ,masterLevel ,masterLevel ,1]).

floor;

473 },{

474 sendArray[masterIndex] = (sendArray[masterIndex] * systemMasterBrightness).ceil

475 });

476

477 ^sendArray;

478 }

479

480 setMasterLevel {

481 arg m;

482 this.setColor (\master ,m);

483 }

484

485 setR {

486 arg r_;

487 this.setColor (\r,r_);

488 }

489

490 setG {

491 arg g_;

492 this.setColor (\g,g_);

493 }

494

495 setB {

496 arg b_;

101

497 this.setColor (\b,b_);

498 }

499

500 setW {

501 arg w_;

502 this.setColor (\w,w_);

503 }

504

505 getCurrentColor {

506 ^Color.new255(colors.at(\r).value ,colors.at(\r).value ,colors.at(\r).value);

507 }

508

509 setH {

510 arg hue;

511 var cc = this.getCurrentColor;

512 cc.hue_(hue);

513 this.setColors(cc.red ,cc.green ,cc.blue ,0);

514 }

515

516 setS {

517 arg sat;

518 var cc = this.getCurrentColor;

519 cc.sat_(sat);

520 this.setColors(cc.red ,cc.green ,cc.blue ,0);

521 }

522

523 setV {

524 arg val;

525 var cc = this.getCurrentColor;

526 cc.val_(val);

527 this.setColors(cc.red ,cc.green ,cc.blue ,0);

528 }

529

530 setColors {

531 arg r, g, b, w;

532 colors.at(\r).setValue(r);

533 colors.at(\g).setValue(g);

534 colors.at(\b).setValue(b);

535 colors.at(\w).setValue(w);

536 /* this.setColor (\r,r);

537 this.setColor (\g,g);

538 this.setColor (\b,b);

539 this.setColor (\w,w);*/

540 }

541

542 /* toggleColor {

543 arg color , onTime , offTime;

544 }*/

545

546 setColor {

547 arg color , value; // color is a symbol

548 colors.at(color) !? (_.setValue(value)) ?? {"NO SUCH COLOR".warn};

549 }

550

551 setAll {

552 arg red , green , blue , white , master;

553 //this.setColor (\master ,master);

554 colors.at(\ master).setValue(master);

555 /* this.setColor (\r,red);

556 this.setColor (\g,green);

557 this.setColor (\b,blue);

558 this.setColor (\w,white);*/

559 colors.at(\r).setValue(red);

560 colors.at(\g).setValue(green);

561 colors.at(\b).setValue(blue);

102

562 colors.at(\w).setValue(white);

563 }

564

565 /* updateFromCue {

566 arg cueArray;

567 [\r,\g,\b,\w].do({

568 arg c;

569 colors.at(c).setValue(cueArray[colorIndicies.at(c)]);

570 });

571 }*/

572

573 blackOut {

574 arg fadeTime = 0;

575 //" blackout in light called ". postln;

576 colors.at(\ master).fadeToValue (0,fadeTime);

577 }

578

579 reset {

580 colors.at(\r).reset;

581 colors.at(\g).reset;

582 colors.at(\b).reset;

583 colors.at(\w).reset;

584 colors.at(\ master).reset;

585 }

586

587 stopAnyColorTasks {

588 colors.do(_.stopTask);

589 }

590

591 getColor {

592 arg c;

593 var sendC;

594 sendC = colors.at(c);

595 if(sendC.isNil ,{"NO SUCH COLOR".warn});

596 ^sendC;

597 }

598 }

599

600 MyDMXMaster {

601 classvar <>updateTime = 0.033333333333333;

602 var server , lights , /* nValsPerLight = 8,*/ /*adderArray ,*/ cues , masterTask ,

totalIndiciesUsed , /*<>updateTime ,*/ toDMX , currentCueIndex , cueOrder , fadeTimes ,

subTask , dmxControlForPausing , <>addInArray = nil , mockup , <>verbose = false;//,

autoFollowTimes;

603

604 *new {

605 arg server , lightTypes , dmxStartChan = 1, dmxControlForPausing , mockup;

606 // light types:

607 // 0: Spotlight IGB -B18

608 // 1: Chauvet 64 RGBA

609 // 2: LFS -75DMX

610 // 3: Chauvet Color Dash Batten

611 ^super.new.init(server , lightTypes , dmxStartChan , dmxControlForPausing , mockup);

612 }

613

614 reset {

615 lights.do({

616 arg l;

617 l.reset;

618 });

619 }

620

621 systemMasterBrightness_ {

622 arg b;

623 lights.do(_.systemMasterBrightness_(b));

103

624 }

625

626 init {

627 arg server_ , lightTypes_ , dmxStartChan = 1, dmxControlForPausing_ , mockup_;

628 var offset = dmxStartChan - 1;// -1 because we want to start at the 0th index

629 server = server_;

630 mockup = mockup_;

631 // updateTime !? ({ updateTime = 30. reciprocal });

632

633 //" dmx update time: %". format(updateTime).postln;

634

635 NodeWatcher(server);

636

637 // adderArray = Array.fill(nValsPerLight ,{arg i; i});

638

639 cues = Dictionary.new;

640 cueOrder = [];

641 currentCueIndex = -1;

642 fadeTimes = Dictionary.new;

643 // autoFollowTimes = Dictionary.new;

644

645 toDMX = NetAddr ("127.0.0.1" ,6000);

646

647 // offset = 0;

648 lights = lightTypes_.collect ({

649 arg lightType , i;

650 var nValsNeeded;

651 //[lightType ,i]. postln;

652 var light;

653 # light , nValsNeeded = MyDMXLight(server ,offset , lightType , updateTime ,this);

654 offset = offset + nValsNeeded;

655 light;

656 });

657

658 totalIndiciesUsed = offset;

659

660 masterTask = Task({

661 inf.do({

662 this.sendData(this.getDataArray);

663 // server.sync;

664 updateTime.wait;

665 });

666 },SystemClock).play;

667

668 dmxControlForPausing_ !? ({

669 arg dcfp;

670 this.setDMXControlForPausing(dmxControlForPausing_);

671 });

672

673 lights.do({

674 arg light , i;

675 "Light %: ". format(i+1).post;

676 light.lightType.switch(

677 0,{" Spotlight IGB -B18". postln;},

678 1,{" Chauvet 64 RGBA". postln;},

679 2,{"LFS -75DMX". postln;},

680 3,{" Chauvet Color Dash Batten ". postln ;}

681);

682 " DMX start channel: %\n". format(light.getOffset + 1).postln;

683 });

684 }

685

686 getLights {

687 ^lights;

688 }

104

689

690 sendData {

691 arg dataArray;

692 // dataArray.postln;

693 if(addInArray.notNil ,{

694 dataArray = dataArray + addInArray;

695 });

696

697 // dataArray = dataArray;

698

699 dataArray = ["/ dmxAll512 "] ++ dataArray;

700

701 toDMX.sendMsg (* dataArray);

702

703 if(verbose ,{ dataArray.postln ;});

704

705 if(mockup.notNil ,{

706 mockup.update(this.getTuplesForMockup);

707 });

708 }

709

710 getTuplesForMockup {

711 ^lights.collect ({

712 arg light;

713 light.getTupleForMockUp;

714 });

715 }

716

717 getDataArray {

718 var tempDMXData = 0.dup(totalIndiciesUsed);

719

720 lights.do({

721 arg light;

722 tempDMXData.putEach(light.getOffset + light.getAdderArray ,light.getDataArray);

723 });

724

725 ^tempDMXData;

726 }

727

728 setLightColor {

729 arg light , color , value;

730 //this.stopSubTask;

731 lights[light]. setColor(color ,value);

732 }

733

734 setLightAll {

735 arg light , r, g, b, w, master;

736 lights[light]. setAll(r,g,b,w,master);

737 }

738

739 getLightColor {

740 arg light , color;

741 ^lights[light]. getColor(color);

742 }

743

744 getLight {

745 arg light;

746 ^lights[light];

747 }

748

749 postCurrentLook {

750 arg cueNumber;

751 this.getDataArray.postln;

752 }

753

105

754 blackOut {

755 arg fadeTime = 0;

756 //" blackout in master called ". postln;

757 lights.do({

758 arg light;

759 light.blackOut(fadeTime);

760 })

761 }

762

763 setDMXControlForPausing {

764 arg dmxControl_;

765 dmxControlForPausing = dmxControl_;

766 masterTask.pause;

767 }

768

769 pauseOtherControls {

770 dmxControlForPausing !? (_.pause);

771 masterTask.isPlaying.not.if({ masterTask.play});

772 }

773

774 playOtherControls {

775 masterTask.pause;

776 dmxControlForPausing !? (_.play);

777 // dmxControlForPausing !? (_.play);

778 }

779

780 setOtherControlsToPreset {

781 arg p;

782 this.playOtherControls;

783 "---Setting other controls to preset: %". format(p).postln;

784 dmxControlForPausing !? (_.goToPresetNumber(p));

785 }

786 }

C Code for Section 3.2.2

code/1/nn fm 00 make dataset.scd

1 (

2 ~dir = "/Users/ted/Desktop/SCD/flucoma/nn fm testing /";

3 File.mkdir(~dir);

4 ~stamp = Date.localtime.stamp;

5

6 SynthMIRNRT(

7

8 // 1st argument is an array arrays. each contains

9 // (1) the name of the param (as will be passed to the synth) and

10 // (2) a control spec for how this para should be scaled (from 0-1 to what the

synth expects)

11

12 [

13 [

14 \cfreq ,

15 ControlSpec (20 ,20000 ,\ exp)

16],[

17 \mfreq ,

18 ControlSpec (20 ,20000 ,\ exp)

19],[

20 \index ,

21 ControlSpec (0,20,\lin)

22]

23],

24

25 // 2nd argument is the output location for the csv file

106

26

27 "%/% _nn_fm_poisson =37542. csv". format (~dir ,~ stamp),

28

29 // 3rd argument is the synth that you want to exctract descriptors from - NB: needs to

have an "outBus" argument !!!!

30

31 SynthDef (\ fm_test_nrt ,{

32 arg cfreq = 20, mfreq = 20, index = 0, outBus = 0;

33

34 // synth stuff

35 var sig = SinOsc.ar(cfreq + SinOsc.ar(mfreq ,0,index * mfreq));

36 //[cfreq ,mfreq ,index].poll;

37

38 Out.ar(outBus ,sig);

39 }),

40

41 // 4th argument is either:

42 // - an integer of how many steps you divide each input dimension by in

normalized space (e.g., 5 would sample that dimension

43 // at 0, 0.25, 0.5, 0.75, and 1 and then scale that up by the Control spec) (

also 5 with three dimensions would be pow(5,3) = 125 data points

44 // - or a path to a csv file with the (normalized) data points you want to use to

do the sampling.

45

46 "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/machine learning/Sampling/Poisson

Sampling/poisson_sampling_n_dims/generated_samples/poisson_sample_set_ndims =3

_npoints =37542 _r =0.03_k=20_2020 -07 -16_20 -39 -56. csv",

47

48 0.5, // 5th argument is pre -wait: duration (in NRT) between setting the input parameters

and recording the sample of audio descriptors

49 0.1, // 6th argument is post -wait: duration (in NRT) between setting the recording the

sample of audio descriptors and setting the next input parameters

50 nil , // 7th argument is where to put the "audio file" of data , leaving it nil will use

temp dir

51 {"============== DONE =============". postln;}, // 8th arg: done action

52 false // 9th arg: verbosity

53);

54)

code/1/nn fm 01 pare data.scd

1 (

2 ~csv_data = CSVFileReader.readInterpret ("/ Users/ted/Desktop/SCD/flucoma/nn fm /200726 _01

poisson no median filter /200726 _114107_nn_fm_poisson =37542. csv",startRow :1);

3 ~csv_data.size.postln;

4 ~csv_data = ~csv_data.select ({

5 arg row;

6 //cfreq < 7500 mfreq < 3000 mfreq < cfreq ((index + 1) * mfreq) <

cfreq

7 (row[0] < 5000) && (row [1] < 2500) && (row[1] < row [0]) && (((row[2] + 1) * row [1]) <

row [0])

8 });

9

10 ArrayToCSV (~csv_data ,"/ Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726

_114107_nn_fm_poisson =37542 _7500_3k_mfreq <cfreq_indexCalc.csv");

11 "done";

12 ~csv_data.size.postln;

13

14)

15

16 // peek to get a sense of it

17 (

18 ~keep_indices = [0,1,2] ++ (43..55);

19 ~csv_data = ~csv_data.collect ({

20 arg row;

107

21 row.atAll(~ keep_indices);

22 });

23 ~normed_data = MinMaxScaler.fit_transform (~ csv_data);

24 ~headers = ["cfreq","mfreq","index"," spec_centroid",

25 "spec_spread",

26 "spec_skewness",

27 "spec_kurtosis",

28 "spec_rolloff",

29 "spec_flatness",

30 "spec_crest",

31 "pitch",

32 "pitch_confidence",

33 "loudness",

34 "loudness_truepeak",

35 "zero_crossing",

36 "sensory_dissonance"

37];

38 PlotXYColor (~ normed_data ,{

39 arg idx;

40 idx.postln;

41 ~csv_data[idx][0..2]. postln;

42 ~csv_data[idx][3..]. postln;

43 },~headers ,slewTime :0);

44)

code/1/nn fm 02 training.scd

1 (

2 s.options.device_ (" Scarlett 6i6 USB");

3 s.waitForBoot ({

4 var train = {

5 arg fm_json , analysis_json , analysis_name , nSteps , shape;

6 Task({

7 var timestamp = Date.localtime.stamp;

8 //var dir = "/ Users/ted/Desktop/SCD/flucoma/nn fm /200724 _01 /%". format(timestamp)

;

9 var dir = "%%_%_%_shape =%". format(PathName(analysis_json).pathOnly ,Date.

localtime.stamp ,nSteps ,analysis_name ,shape);

10 //var fm_json = "/ Users/ted/Desktop/SCD/flucoma/nn fm /200723 _01 /200718

_202553_nn_fm_nSteps =30_fm.json";

11 //var analysis_json = "/ Users/ted/Desktop/SCD/flucoma/nn fm /200723 _01 /200718

_202553_nn_fm_nSteps =30 _entire_analysis.json";

12 //var analysis_name = "entire_analysis ";

13

14 // read

15 var fm = FluidDataSet(s,(\fm++ UniqueID.next).asSymbol);

16 var fm_norm;

17 var fm_norm_ds;

18 var analysis;

19 var analysis_norm;

20 var analysis_norm_ds;

21 var hidden_act , output_act , activation_ints , maxIter , net;

22 var run_fit;

23

24 "------- dir: %". format(dir).postln;

25 "------- fm json: %". format(fm_json).postln;

26 "------- analysis json: %". format(analysis_json).postln;

27 "------- name: %". format(analysis_name).postln;

28 "------- nSteps: %". format(nSteps).postln;

29 "------- shape: %". format(shape).postln;

30 "". postln;

31

32 File.mkdir(dir);

33

34 s.sync;

108

35 fm.read(fm_json);

36 s.sync;

37 // fm_stand = FluidStandardize(s);

38 //s.sync;

39 // fm_stand_ds = FluidDataSet(s,\ fm_stand);

40 //s.sync;

41 // fm_stand.fitTransform(fm,fm_stand_ds ,{" done". postln ;});

42 //s.sync;

43 // fm_stand.write ("/ Users/ted/Desktop/SCD/flucoma/nn fm /200718 _01/%

_fm_stand_nPoints =30. json". format(timestamp));

44 //s.sync;

45 fm_norm = FluidNormalize(s);

46 s.sync;

47 fm_norm_ds = FluidDataSet(s,(\ fm_norm ++ UniqueID.next).asSymbol);

48 s.sync;

49 fm_norm.fitTransform(fm,fm_norm_ds /*,{" done". postln ;}*/);

50 s.sync;

51 fm_norm.write ("%/% _fm_norm_nSteps =%. json". format(dir ,timestamp ,nSteps));

52 s.sync;

53

54 // analysis data

55 analysis = FluidDataSet(s,(\ analysis ++ UniqueID.next).asSymbol);

56 s.sync;

57 analysis.read(analysis_json);

58 s.sync;

59 /* analysis_stand = FluidStandardize(s);

60 s.sync;

61 analysis_stand_ds = FluidDataSet(s,\ analysis_stand);

62 s.sync;

63 analysis_stand.fitTransform(analysis ,analysis_stand_ds ,{" done". postln ;});

64 s.sync;

65 analysis_stand.write ("/ Users/ted/Desktop/SCD/flucoma/nn fm /200718 _01/%

_mfcc_stand_nPoints =30. json". format(timestamp));

66 s.sync ;*/

67 analysis_norm = FluidNormalize(s);

68 s.sync;

69 analysis_norm_ds = FluidDataSet(s,(\ analysis_norm ++ UniqueID.next).asSymbol);

70 s.sync;

71 analysis_norm.fitTransform(analysis ,analysis_norm_ds /*,{" done". postln ;}*/);

72 s.sync;

73 analysis_norm.write ("%/%_%_norm_nSteps =%. json". format(dir ,timestamp ,

analysis_name ,nSteps));

74 s.sync;

75

76 // fm_norm_ds.print;

77 // analysis_norm_ds.print;

78

79 // ============================= hyper params ==========================

80 //shape = [40 ,30 ,20 ,10 ,5];

81 //shape = [3,5,3];

82 //shape = [10 ,6];

83 //n = FluidMLPRegressor(s);

84 hidden_act = "sigmoid ";

85 output_act = "identity ";

86 maxIter = 1000;

87

88 // make network --

89 activation_ints = [hidden_act ,output_act]. collect ({

90 arg string;

91 var return = nil;

92 string.switch(

93 "sigmoid",{return = FluidMLPRegressor.sigmoid},

94 "identity",{return = FluidMLPRegressor.identity},

95 "tanh",{return = FluidMLPRegressor.tanh}

96);

109

97 return;

98 });

99

100 net = FluidMLPRegressor(s,shape ,activation_ints [0], activation_ints [1],0,maxIter

,0.0001 , batchSize :10);

101 s.sync;

102

103 run_fit = {

104 arg counter;

105

106 net.fit(analysis_norm_ds ,fm_norm_ds ,{

107 arg error;

108 "". postln;

109 "------- n steps: %". format(nSteps).postln;

110 "------- analysis: %". format(analysis_name).postln;

111 "------- counter: %". format(counter).postln;

112 "------- n iters: %". format(counter * maxIter).postln;

113 "------- shape: %". format(shape).postln;

114 "------- loss: %". format(error).postln;

115 "". postln;

116

117 net.write ("%/% _analysis ->fm_%_loss=% _nSteps =% _shape =% _hiddenAct =% _outAct

=% _nEpochs =%. json". format(

118 dir ,

119 timestamp ,

120 analysis_name ,

121 error.round (0.0001).asString.padRight (6 ,"0"),

122 nSteps ,

123 shape ,

124 hidden_act ,

125 output_act ,

126 counter * maxIter

127),{

128 if(error > 0.005 ,{

129 run_fit .(counter +1);

130 });

131 });

132 });

133 };

134

135 run_fit .(1);

136 }).play;

137 };

138

139 /* ~fm_json = "/ Users/ted/Desktop/SCD/flucoma/nn fm /200726 _01 poisson no median filter

/200726 _114107_nn_fm_poisson =37542 _5k_2500_mfreq <cfreq_indexCalc_fm.json";

140 ~analysis_json = "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _01 poisson no median

filter /200726 _114107_nn_fm_poisson =37542 _5k_2500_mfreq <cfreq_indexCalc_spec.json ";*/

141

142 /* ~large_analysis_json = "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _01 poisson no

median filter /200726 _114107_nn_fm_poisson =37542 _5k_2500_mfreq <

cfreq_indexCalc_all_but_chroma.json ";*/

143 [

144 [

145 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson

=37542 _7500_3k_mfreq <cfreq_indexCalc_fm.json",

146 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson

=37542 _7500_3k_mfreq <cfreq_indexCalc_spec.json",

147 "spec_filtered_data_7500_3k_indexCalc " ,5685 ,[8]

148]/*,

149 [

150 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_fm.json",

151 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_spec.json",

110

152 "spec_filtered_data_10k_5k_indexCalc " ,6545 ,[7]

153],

154 [

155 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_fm.json",

156 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_spec.json",

157 "spec_filtered_data_10k_5k_indexCalc " ,6545 ,[6]

158],

159 [

160 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_fm.json",

161 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_spec.json",

162 "spec_filtered_data_10k_5k_indexCalc " ,6545 ,[5]

163],

164 [

165 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_fm.json",

166 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_spec.json",

167 "spec_filtered_data_10k_5k_indexCalc " ,6545 ,[10 ,5]

168],

169 [

170 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_fm.json",

171 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_spec.json",

172 "spec_filtered_data_10k_5k_indexCalc " ,6545 ,[11 ,4]

173],

174 [

175 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_fm.json",

176 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_spec.json",

177 "spec_filtered_data_10k_5k_indexCalc " ,6545 ,[9,4]

178],

179 [

180 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_fm.json",

181 "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _02 /200726 _114107_nn_fm_poisson =37542

_10k_5k_mfreq <cfreq_indexCalc_spec.json",

182 "spec_filtered_data_10k_5k_indexCalc " ,6545 ,[7,4]

183]*/

184].do({

185 arg arr;

186 var fm_json = arr [0];

187 var analysis_json = arr [1];

188 var analysis_name = arr [2];

189 var nSteps = arr [3];

190 var shape = arr [4];

191 train.(fm_json ,analysis_json ,analysis_name ,nSteps ,shape);

192 });

193 });

194)

code/1/nn fm 03 running.scd

1 (

2 ~render = {

3 arg path;

4 s.waitForBoot ({

5 Task({

6

7 var fm_norm_path = "/Users/ted/Desktop/SCD/flucoma/nn fm /200726

111

_172723_fm_norm_nSteps =4584. json";

8 var analysis_norm_path = "/ Users/ted/Desktop/SCD/flucoma/nn fm /200726

_172723_spec_filtered_data_norm_nSteps =4584. json";

9 var nn_path = "/Users/ted/Desktop/SCD/flucoma/nn fm /200726 _172723_melbands ->

fm_spec_filtered_data_nSteps =4584 _shape =[6]_hiddenAct=sigmoid_outAct=

identity_nEpochs =31800 _loss =0.0499. json";

10

11 var analysis_size = 13;

12

13 var test_buf , fm_mins;

14 var fm_maxes , analysis_mins , analysis_maxes , fm_ranges , analysis_ranges;

15 var fm_json , analysis_json , bus = Bus.audio(s,2);

16

17 s.sync;

18

19 fm_json = JSONFileReader.read(fm_norm_path);

20 analysis_json = JSONFileReader.read(analysis_norm_path);

21

22 fm_mins = fm_json.at(" data_min ").asFloat;

23 fm_maxes = fm_json.at(" data_max ").asFloat;

24 fm_ranges = fm_maxes - fm_mins;

25

26 analysis_mins = analysis_json.at(" data_min ").asFloat;

27 analysis_maxes = analysis_json.at(" data_max ").asFloat;

28 analysis_ranges = analysis_maxes - analysis_mins;

29

30 // test_buf = Buffer.readChannel(s,"/ Volumes/Ted ’s 10TB My Book (June 2020)/

PROJECT FILES/machine learning/Training Data/Audio/a test file.wav",channels

:[0]);

31 //

32 // test_buf = Buffer.read(s,"/ Users/ted/Documents/_CREATING/_PROJECT FILES/jack/

sounds (unedited)/SC_200727_171448.aiff");

33 // test_buf = Buffer.readChannel(s,"/ Volumes/Ted ’s 10TB My Book (June 2020)/

PROJECT FILES/machine learning/Training Data/Audio/basson mixed activity for

testing (complete).wav",channels :[0]);

34 // test_buf = Buffer.readChannel(s,"/ Volumes/Ted ’s 10TB My Book (June 2020)/

PROJECT FILES/machine learning/Training Data/Audio/quick brown fox.wav",

channels :[0]);

35 // test_buf = Buffer.readChannel(s,"/ Volumes/Ted ’s 10TB My Book (June 2020)/SOUND

DESIGNS/_EURORACK SOUNDS /200613 eurorack 01/ _bounces /200613 eurorack 01

last 10 min excerpt.wav",channels :[0]);

36

37 test_buf = Buffer.readChannel(s,path ,channels :[0 ,1]);

38 // test_buf = Buffer.read(s,"/ Users/ted/Documents/_CREATING/_PROJECT FILES/wet

ink/sounds/internal feedback tones STEREO.wav");

39 // test_buf = Buffer.read(s,"/ Users/ted/Documents/_CREATING/_PROJECT FILES/wet

ink/sounds/from improv patch /33 filter glitch some glitchy gestures.wav");

40

41 // test_buf = Buffer.readChannel(s,"/ Users/ted/Documents/_CREATING/_PROJECT FILES

/wet ink/sounds 2/ slowed down eurorack with chromagram data.wav",channels

:[0]);

42

43 /* [fm_mins ,fm_maxes ,fm_ranges]. postln;

44 [analysis_mins ,analysis_maxes ,analysis_ranges]. postln ;*/

45

46 s.sync;

47

48 ~analysis_channel = {

49 arg in_bus , offset = 0, outBus , target;

50 Task({

51 var net , pitching_bus , catching_bus , input_buf0 ,input_buf1 , output_buf0 ,

trig_rate = 25, analysis_synth , out_synth;

52 var amp_bus = Bus.control(s);

53

54 net = FluidMLPRegressor ();

112

55 pitching_bus = Bus.control(s);

56 catching_bus = Bus.control(s);

57 input_buf0 = Buffer.alloc(s,1, analysis_size);

58 input_buf1 = Buffer.alloc(s,analysis_size);

59

60 output_buf0 = Buffer.alloc(s,3);

61

62 s.sync;

63

64 net.read(nn_path);

65

66 s.sync;

67

68 net.synth.moveAfter(target);

69

70 s.sync;

71

72 net.inBus_(pitching_bus);

73 net.outBus_(catching_bus);

74 net.inBuffer_(input_buf1);

75 net.outBuffer_(output_buf0);

76

77 s.sync;

78

79 analysis_synth = {

80 arg inBus;

81 //var stereo = PlayBuf.ar(test_buf.numChannels ,test_buf ,1,0,rrand(0,

test_buf.numFrames) ,1);

82 var sig = In.ar(inBus ,1);

83 //var sig = stereo

84 //var mfcc = FluidMFCC.kr(sig ,40) [1..39];

85 var spec = FluidSpectralShape.kr(sig);

86 var pitch = FluidPitch.kr(sig);

87 var loudness = FluidLoudness.kr(sig);

88 var zc = A2K.kr(ZeroCrossing.ar(sig));

89 var senseDis = SensoryDissonance.kr(FFT(LocalBuf (2048) ,sig));

90 //var melbands = FluidMelBands.kr(sig ,maxNumBands :40);

91 var trig = Impulse.kr(trig_rate);

92 var flat_trig;

93 //var vector = mfcc ++ spec ++ pitch;

94 //var vector = spec ++ pitch;

95 var vector = spec ++ pitch ++ loudness ++ [zc ,senseDis];

96

97

98 Out.kr(amp_bus ,DelayN.kr(Amplitude.kr(sig),trig_rate.reciprocal ,

trig_rate.reciprocal));

99

100 vector = (vector - analysis_mins) / analysis_ranges;

101

102 vector = Median.kr(31, vector);

103

104 RecordBuf.kr(vector ,input_buf0);

105

106 flat_trig = FluidBufFlatten.kr(input_buf0 ,input_buf1 ,trig:trig);

107

108 Out.kr(pitching_bus ,Done.kr(flat_trig));

109 // DelayN.ar(Mix(stereo),trig_rate.reciprocal ,trig_rate.reciprocal);

110 //sig;

111 }.play(net.synth ,args :[\inBus ,in_bus.subBus(offset)],addAction :\

addBefore);

112

113 s.sync;

114

115 Buffer.read(s,"/ Users/ted/Music/_SAMPLES/eurorack waveforms/VCOb sine.

wav",action :{

113

116 arg buf;

117 buf.loadToFloatArray(action :{

118 arg float_array;

119 var sized = float_array.resamp1 (256);

120 var signal = Signal.newFrom(sized);

121 Task({

122 var wt = signal.asWavetable;

123 var wt_buf = Buffer.loadCollection(s,wt);

124 s.sync;

125 //buf2.plot(name);

126 wt_buf.normalize;

127 s.sync;

128

129 out_synth = {

130 var max_del = 8;

131 var inTrig = In.kr(catching_bus);

132 var outs = 3. collect ({

133 arg i;

134 Index.kr(output_buf0 ,i);

135 });

136 var sig;

137 var cfreq , mfreq , index;

138 var msig;

139 var del_time = LFDNoise3.kr(2).range (0,1).pow (2) *

max_del;

140

141 outs = Median.kr(31,outs);

142

143 outs = (outs * fm_ranges) + fm_mins;

144

145 outs = outs.lag(trig_rate.reciprocal);

146

147 outs = outs ++ [In.kr(amp_bus)];

148

149 //outs.poll;

150

151 cfreq = outs [0]. clip (20 ,20000);

152 mfreq = outs [1]. clip (20 ,20000);

153 index = max(outs [2] ,0);

154

155 //sig = SinOsc.ar(cfreq + SinOsc.ar(mfreq ,0,mfreq *

index));

156 msig = Osc.ar(wt_buf ,mfreq ,3pi/2,mfreq * index);

157 //sig = Osc.ar(wt_buf ,cfreq + msig ,3pi/2);

158 sig = SinOsc.ar(cfreq + msig/* SinOsc.ar(mfreq ,0,mfreq *

index)*/);

159

160 sig = sig * outs [3];

161 //sig = Pan2.ar(sig ,LFDNoise3.kr(FluidLoudness.kr(sig

,1,0).linlin (-40,0,0.5,2)));

162 //Out.ar(0,sig);

163 Out.ar(outBus ,sig);

164 }.play;

165 }).play;

166 });

167 });

168 },AppClock).play;

169 };

170

171 //s.record;

172

173 ~inSynth = {

174 var sig = PlayBuf.ar(2,test_buf ,1,0,0,0,2);

175 Out.ar(bus ,sig);

176 //sig;

114

177 }.play;

178

179 s.sync;

180

181 2.do({

182 arg i;

183 ~analysis_channel .(bus ,i,i,~ inSynth);

184 });

185 }).play;

186 });

187 };

188)

189

190 (

191 Task({

192 var paths = [

193 "/Users/ted/Documents/_CREATING/_PROJECT FILES/barrys album/reaper/barry 01/ _bounces

/stems_200818_143915 /01 nim noisy 01.wav",

194 "/Users/ted/Documents/_CREATING/_PROJECT FILES/barrys album/reaper/barry 01/ _bounces

/stems_200818_143915 /04 nim squishy 01. wav",

195 "/Users/ted/Documents/_CREATING/_PROJECT FILES/barrys album/reaper/barry 01/ _bounces

/stems_200818_143915 /05 nim squishy 02. wav",

196 "/Users/ted/Documents/_CREATING/_PROJECT FILES/barrys album/reaper/barry 01/ _bounces

/stems_200818_143915 /06 nim individual pops 01.wav",

197 "/Users/ted/Documents/_CREATING/_PROJECT FILES/barrys album/reaper/barry 01/ _bounces

/stems_200818_143915 /33 filter glitch some glitchy gestures.wav"

198];

199

200 paths.do({

201 arg path;

202 var dur = SoundFile.use(path ,{arg sf; sf.duration });

203

204 path.postln;

205

206 s.record;

207 ~render .(path);

208 dur.wait;

209 1.wait;

210 s.stopRecording;

211 1.wait;

212 });

213

214 "================== DONE ============". postln;

215

216 }).play;

217)

code/1/FMNN 2.sc

1 FM_NN : ImprovModule {

2 /* CLASS VARIABLES AND VARIABLES OF ImprovModule CLASS

3

4 classvar <>server , >toLemur;

5 var inBus , outBus , group , <cavity , <win , winBounds;

6

7 */

8 classvar fm_norm_path = "/ Users/ted/Library/Application Support/SuperCollider/Extensions

/tedsExtensions/machineLearning/NN (basic feedforward)/200726 _172723_fm_norm_nSteps

=4584. json";

9 classvar analysis_norm_path = "/Users/ted/Library/Application Support/SuperCollider/

Extensions/tedsExtensions/machineLearning/NN (basic feedforward)/200726

_172723_spec_filtered_data_norm_nSteps =4584. json";

10 classvar nn_path = "/Users/ted/Library/Application Support/SuperCollider/Extensions/

tedsExtensions/machineLearning/NN (basic feedforward)/200726 _172723_melbands ->

fm_spec_filtered_data_nSteps =4584 _shape =[6]_hiddenAct=sigmoid_outAct=

115

identity_nEpochs =31800 _loss =0.0499. json";

11

12 // these variables probably include the actual variables

13 // of the module and also variables for each of the GUIs

14 var analysis_size = 13;

15 var trig_rate = 25;

16 var synth;

17 var fm_scaler;

18 var analysis_scaler;

19 var net;

20

21 /* METHODS THAT EACH MODULE MUST HAVE:

22

23 initClass

24 init {

25 arg inBus_ , outBus_ , group_ , cavity_;

26 inBus = inBus_;

27 outBus = outBus_;

28 group = group_;

29 cavity = cavity_;

30 }

31

32 free

33

34 inBus_

35 outBus_

36

37 pause

38 run

39

40 save

41 load

42

43 */

44

45 // *initClass {

46 // StartUp.defer {

47 //

48 // }

49 // }

50

51 init {

52 arg inBus_ , outBus_ , group_ , cavity_ , onSystemLoad;

53 inBus = inBus_;

54 outBus = outBus_;

55 group = group_;

56 cavity = cavity_;

57

58 if(onSystemLoad ,{

59 this.loadserver;

60 },{

61 Task({

62 this.loadserver;

63 }).play(AppClock);

64 });

65 }

66

67 loadserver {

68 analysis_scaler = FluidNormalize(server);

69 fm_scaler = FluidNormalize(server);

70 net = FluidMLPRegressor(server);

71

72 server.sync;

73

74 analysis_scaler.read(analysis_norm_path);

116

75 fm_scaler.read(fm_norm_path);

76 net.read(nn_path);

77

78 server.sync;

79

80 synth = {

81 arg inBus_ , trig_rate_ = 25, outBus_ , gate = 1, pauseGate = 1;

82 var sig = Mix(In.ar(inBus_ ,4)) * 0.25;

83 var spec = FluidSpectralShape.kr(sig);

84 var pitch = FluidPitch.kr(sig);

85 var loudness = FluidLoudness.kr(sig);

86 var zc = A2K.kr(ZeroCrossing.ar(sig));

87 var senseDis = SensoryDissonance.kr(FFT(LocalBuf (2048) ,sig));

88 var trig = Impulse.kr(trig_rate_);

89 var vector = spec ++ pitch ++ loudness ++ [zc ,senseDis];

90 var amp = Amplitude.kr(sig);

91 var analysis_buf = LocalBuf(analysis_size);

92 var analysis_scaled_buf = LocalBuf(analysis_size);

93 var nn_out_buf = LocalBuf (3);

94 var fm_scaled_buf = LocalBuf (3);

95 var outs , cfreq ,mfreq , index;

96

97 vector = Median.kr(31, vector);

98

99 vector.do({

100 arg val , i;

101 BufWr.kr(val ,analysis_buf ,i,1);

102 });

103

104 analysis_scaler.kr(trig ,analysis_buf ,analysis_scaled_buf);

105 net.kr(trig ,analysis_scaled_buf ,nn_out_buf);

106 fm_scaler.kr(trig ,nn_out_buf ,fm_scaled_buf ,invert :1);

107

108 outs = 3. collect ({

109 arg i;

110 BufRd.kr(1,fm_scaled_buf ,i,1,1);

111 });

112

113 outs = Median.kr(31,outs);

114

115 cfreq = outs [0]. clip (20 ,20000);

116 mfreq = outs [1]. clip (20 ,20000);

117 index = max(outs [2],0);

118

119 sig = SinOsc.ar(cfreq + SinOsc.ar(mfreq ,0,mfreq * index));

120

121 sig = sig * amp;

122 sig = sig * EnvGen.kr(Env.asr (0.03 ,1 ,0.03),gate ,doneAction :2);

123 sig = sig * EnvGen.kr(Env.asr (0.03 ,1 ,0.03),pauseGate ,doneAction :1);

124 Out.ar(outBus_ ,sig.dup (4));

125 }.play(group ,nil ,0,args :[\inBus_ ,inBus ,\trig_rate_ ,trig_rate ,\outBus_ ,outBus]);

126 }

127

128 free {

129 Routine{

130 this.removeAllAssignments;

131 synth.set(\gate ,0);

132

133 0.1. wait;

134

135 analysis_scaler.free;

136 fm_scaler.free;

137 net.free;

138

139 win.close;

117

140 }.play;

141 }

142

143 inBus_ {

144 arg inBus_;

145 inBus = inBus_;

146 synth.set(\inBus ,inBus)

147 }

148

149 outBus_ {

150 arg outBus_;

151 outBus = outBus_;

152 synth.set(\outBus ,outBus);

153 }

154

155 pause {

156 synth.set(\pauseGate ,0);

157 }

158

159 run {

160 synth.run;

161 synth.set(\pauseGate ,1);

162 }

163

164 /* save {

165 var saves;

166 saves = Dictionary.new;

167

168 ^saves;

169 }

170

171 load {

172 arg saves;

173 }*/

174

175 /* OPTIONAL CLASSES FOR INTERFACING WITH LEMUR

176

177 lemurX

178 lemurY

179 lemurControlPad

180 */

181

182 lemurX {

183 arg x;

184 }

185

186 lemurY {

187 arg y;

188 }

189

190 lemurControlPad {

191 arg cp;

192 }

193 }

code/1/MinMaxScaler.sc

1 /*

2 Ted Moore

3 www.tedmooremusic.com

4 ted@tedmooremusic.com

5 June 4, 2020

6 */

7

8 MinMaxScaler {

118

9 var <>ranges;

10

11 initRanges {

12 arg size;

13 ranges = ControlSpec(inf ,-inf).dup(size);

14 }

15

16 *fit_transform {

17 arg data;

18 ^super.new.fit_transform(data);

19 }

20

21 *fit {

22 arg data;

23 ^super.new.fit(data);

24 }

25

26 fit {

27 arg data;

28 this.initRanges(data [0]. size);

29 //" ranges size: %". format(ranges.size).postln;

30 data.do({

31 arg entry;

32 this.assimilate(entry);

33 });

34 }

35

36 assimilate {

37 arg entry;

38 entry.do({

39 arg val , i;

40 if(val > ranges[i].maxval ,{ ranges[i]. maxval = val});

41 if(val < ranges[i].minval ,{ ranges[i]. minval = val});

42 });

43 }

44

45 transform {

46 arg data;

47 data = data.collect ({

48 arg entry;

49 entry.collect ({

50 arg val , i;

51 var return = ranges[i]. unmap(val);

52 if(return.isNaN ,{ return = 0});

53 return;

54 });

55 });

56 ^data;

57 }

58

59 fit_transform {

60 arg data;

61 this.fit(data);

62 ^this.transform(data);

63 }

64

65 inverse_transform {

66 arg data;

67 data = data.collect ({

68 arg entry;

69 entry.collect ({

70 arg val , i;

71 ranges[i].map(val);

72 });

73 });

119

74 ^data;

75 }

76

77 assimilate_transform {

78 arg entry;

79 var return;

80 this.assimilate(entry);

81 return = this.transform ([entry])[0];

82 ^return;

83 }

84 }

code/1/PlotXYColor.sc

1 /*

2 Ted Moore

3 www.tedmooremusic.com

4 ted@tedmooremusic.com

5 June 4, 2020

6

7 demo video: https :// drive.google.com/file/d/18 L7nxhboE3gpEIeuF1etUfJhQ -7 uI23u/view?usp=

sharing

8 */

9

10 PlotXYColor {

11 var axisFeatureIndex , // dictionary [string of axis -> vector index]

12 axisOptions , // array of strings that are the labels of the vector indices (columns)

13 axisPums , // pop up menus for selecting what column belongs to what axis

14 circleRadius = 6, // how big the dots are

15 corpus , // the data that is passed in , but not that data that get ’s used in the course

of things , that ’s prCorpus

16 corpus_dims ,

17 connector_lines ,

18 colorArray ,

19 disp_colors ,

20 headerArray , // array of strings that user can pass for column headers (OPTIONAL)

21 idArray , // array of *anything* (ints , strings , whatever), that the user can pass to be

returned on "hover over" (OPTIONAL)

22 ignorePrevious , // when the same data point is selected twice in a row , should it be

reported twice , or not? (DEFAULT = true)

23 lastHovered = nil , // stores the last point that was hovered over

24 mouseOverFunc , /* user passed function of what to do when the mouse hovers over a point

25 ---------------passed to this function are:

26 (0) index of data point (unless idArray is passed in on initialization , in which case

the data point ’s id is passed)

27 */

28 plotView , // the subview where everything is plotted

29 plotWin , // the window

30 prCorpus , // a private array of objects that handles the corpus data

31 slewTime = 0.5, // how long it takes for the dots to move between different spots in the

plot

32 filter_index_nb ,

33 filter_operator_but ,

34 filter_value_nb ,

35 justReturnNormXY ,

36 >blackDot = nil;

37

38 *new {

39 arg corpus , mouseOverFunc , headerArray /* optional */, idArray /* optional */,

colorArray /* optional */, connector_lines /* optional */, slewTime = 0.5,

ignorePrevious = true , justReturnNormXY = false;

40 ^super.new.init(corpus ,mouseOverFunc ,headerArray ,idArray ,colorArray ,connector_lines ,

slewTime ,ignorePrevious ,justReturnNormXY);

41 }

42

120

43 /** fromFluidDataSet {

44 arg ds, mouseOverFunc , headerArray , colorArray , connector_lines , slewTime = 0.5,

ignorePrevious = true , action;

45 Routine{

46 var norm = FluidNormalize(ds.server);

47 var norm_ds = FluidDataSet(ds.server);

48

49 ds.server.sync;

50

51 norm.fitTransform(ds,norm_ds ,{

52 norm_ds.dump({

53 arg dict;

54 var data = List.new , ids = List.new;

55

56 dict.at("data").keysValuesDo ({

57 arg key , val;

58 ids.add(key);

59 data.add(val);

60 });

61

62 data = data.asArray;

63 ids = ids.asArray;

64

65 defer{

66 action.value(

67 PlotXYColor(data ,mouseOverFunc ,headerArray ,ids ,colorArray ,connector_lines ,slewTime ,

ignorePrevious)

68);

69 };

70 });

71 });

72 }.play;

73 }*/

74

75 init {

76 arg corpus_ , mouseOverFunc_ , headerArray_ , idArray_ , colorArray_ , connector_lines_ ,

slewTime_ , ignorePrevious_ , justReturnNormXY_ = false;

77 colorArray = colorArray_;

78 connector_lines = connector_lines_;

79 corpus = corpus_;

80 corpus_dims = corpus [0]. size;

81 justReturnNormXY = justReturnNormXY_;

82

83 if(corpus_dims < 2,{

84 "Corpus must be at least 2 dimensions ". throw;

85 });

86

87 if((corpus_dims < 3).or(colorArray.notNil),{

88 disp_colors = false;

89 },{

90 disp_colors = true;

91 });

92

93 mouseOverFunc = mouseOverFunc_;

94 headerArray = headerArray_;

95 idArray = idArray_;

96 slewTime = slewTime_;

97 ignorePrevious = ignorePrevious_;

98

99 // if no header information is passed , make header labels "Feature n"

100 if(headerArray.notNil ,{

101 axisOptions = headerArray;

102 },{

103 axisOptions = corpus [0]. size.collect ({

104 arg i;

121

105 "Feature %". format(i);

106 });

107 });

108

109 this.createPlotWindow;

110 }

111

112 createPlotWindow {

113 var container;

114 plotWin = Window ("Plot",Rect (0 ,0 ,1200 ,900))

115 .acceptsMouseOver_(true);

116 plotWin.view.onResize_ ({

117 plotView.bounds_(Rect(0,20, plotWin.view.bounds.width ,plotWin.view.bounds.height

-20));

118 this.slewDisplay (0);

119 });

120

121 // this is just a sub plot for putting the drop down menus in

122 container = CompositeView(plotWin ,Rect(0,0,plotWin.view.bounds.width ,20))

123 .background_(Color.white);

124 container.decorator_(FlowLayout(container.bounds ,0@0 ,0@0));

125

126 // dictionary lookup (name of axis -> what vector index it is currently displaying)

127 axisFeatureIndex = Dictionary.new;

128

129 // make the drop down menus

130 axisPums = ["X Axis","Y Axis","Color "]. collect ({

131 arg name , i;

132 var pum = nil;

133

134 if(i < corpus_dims ,{

135 // start with the axis names as displaying columns 0, 1, 2

136 axisFeatureIndex.put(name ,min(i,corpus_dims -1));

137

138 // make this drop down menu

139 StaticText(container ,Rect (0,0,50,20)).string_ (" " + name);

140 pum = PopUpMenu(container ,Rect (0,0,160,20))

141 .items_(axisOptions) // it has the drop down options made above

142 .action_ ({

143 arg pum;

144 // when something is selected , that index is set in the dictionary to

the name of this axis

145 axisFeatureIndex.put(name ,pum.value);

146 this.slewDisplay(slewTime); // update the display

147 })

148 .value_(i); // start it off as 0, 1, or 2 (respectively)

149 });

150

151 pum; // return the menu to be part of the axisPums array

152 });

153

154 filter_index_nb = EZNumber(container ,Rect (0 ,0 ,150 ,20) ,"Filter Index: ",ControlSpec

(0, axisOptions.size -1,step :1) ,{

155 arg nb;

156 plotView.refresh;

157 },0,false ,120 ,30);

158

159 filter_operator_but = Button(container ,Rect (0,0,20,20))

160 .states_ ([[" "] ,["="] ,[" <"] ,[" >"]])

161 .action_ ({

162 arg but;

163 plotView.refresh;

164 });

165

166 filter_value_nb = EZNumber(container ,Rect (0 ,0 ,100 ,20) ,"Value: ",nil.asSpec ,{ plotView

122

.refresh ;});

167

168 plotView = UserView(plotWin ,Rect(0,20, plotWin.view.bounds.width ,plotWin.view.bounds.

height -20))

169 .drawFunc_ ({ // this is the "draw loop" for a supercollider view - its actually only

called though when it needs to be updated

170 // i.e. it’s not actually looping. this runs everytime plotView.refresh is

called.

171

172 prCorpus.do({ // go through the entire private corpus and put a dot on the

screen for each

173 arg corpusItem , i;

174 var draw = this.filterCheck(corpusItem);

175

176 if(draw ,{

177 Pen.addOval(corpusItem.dispRect);

178 if(colorArray.isNil ,{

179 if(corpus_dims > 2,{

180 Pen.color_(Color.hsv(corpusItem.color ,1,1));

181 },{

182 Pen.color_(Color.black);

183 });

184 },{

185 Pen.color_(colorArray[i]);

186 });

187 Pen.draw;

188 });

189

190 });

191

192 if(connector_lines.notNil ,{

193 //Pen.color_(Color.black);

194 //

195 connector_lines.do({

196 arg pts;

197 var pt1 = prCorpus[pts [0]]. dispRect.center;

198 var pt2 = prCorpus[pts [1]]. dispRect.center;

199 if(pts.size == 3,{

200 Pen.strokeColor_(pts [2]);

201 },{

202 Pen.strokeColor = Color.black;

203 });

204 /* pts.postln;

205 pt1.postln;

206 pt2.postln ;*/

207 Pen.line(pt1 ,pt2);

208 Pen.stroke;

209 });

210 });

211

212 if(blackDot.notNil ,{

213 Pen.addOval(blackDot);

214 Pen.color_(Color.black);

215 Pen.draw;

216 });

217

218 })

219 .mouseOverAction_ ({ // this function gets called each time the mouse moves over the

window

220 arg view , px , py , modifiers;

221 if(justReturnNormXY.not ,{

222 var mousePoint = Point(px ,py);

223 prCorpus.do({ // go through the whole corpus ...

224 arg corpusItem , i;

225

123

226 if(this.filterCheck(corpusItem),{

227 if(corpusItem.dispRect.notNil ,{

228 if(corpusItem.dispRect.contains(mousePoint) ,{ // if the mouse is

inside this datapoint ’s dot...

229 this.returnIndex(i,px ,py); // return the index

230 });

231 });

232 });

233 });

234 });

235 })

236 .mouseMoveAction_ ({ // if the mouse button is down and the mouse moves over the

window this function is called

237 arg view , x, y, modifiers;

238 //[" mouse move",view , x, y, modifiers]. postln;

239 if(justReturnNormXY.not ,{

240 this.findClosest(x,y); // find the closest point ...

241 },{

242 var nx, ny;

243 # nx, ny = this.getrxry(x,y);

244 blackDot = Rect(x,y,circleRadius ,circleRadius);

245 mouseOverFunc .(nx,ny);

246 });

247 });

248

249 // =============== before we display the window and start using , make the private

corpus =============

250 prCorpus = corpus.collect ({

251 arg vector;

252 var xindex , yindex , colorindex , dispx , dispy , color;

253

254 // get the vector indicies that are currently assiged to the three axes (here it

will obviously be 0, 1, 2)

255 # xindex , yindex , colorindex = this.getCurrentIndices;

256

257 // using the axes indices , get the appropriately scaled values for display x pos

, display y pos , and display color for this vector

258 # dispx , dispy , color = this.getScaledXYColorFromIndices(xindex ,yindex ,

colorindex ,vector);

259

260 // each private corpus item has the vector , but also keeps track of where on the

screen and what color its dot is

261 (vector:vector ,dispRect:Rect(dispx ,dispy ,circleRadius ,circleRadius),color:color)

;

262 });

263

264 // update the display stuff

265 this.slewDisplay (0);

266

267 // show the window

268 plotWin.front;

269 }

270

271 setConnectorLines {

272 arg cl_arr;

273 connector_lines = cl_arr;

274 defer{plotView.refresh };

275 }

276

277 filterCheck {

278 arg corpus_item;

279 var draw = true;

280 if(filter_operator_but.value != 0,{

281 var filter_index = filter_index_nb.value;

282 var filter_value = filter_value_nb.value;

124

283 filter_operator_but.value.switch(

284 1,{

285 draw = corpus_item.vector[filter_index] == filter_value;

286 },

287 2,{

288 draw = corpus_item.vector[filter_index] < filter_value;

289 },

290 3,{

291 draw = corpus_item.vector[filter_index] > filter_value;

292 }

293);

294 });

295 ^draw;

296 }

297

298 getrxry { // pass in an x, y point from the screen (in pixels measurements) and get

returned the normalized x, y (0 to 1)

299 arg px, py;

300 var rx = px.linlin(0,plotView.bounds.width ,0,1);

301 var ry = py.linlin(0,plotView.bounds.height ,1,0); // y is inverted for display

purposes

302 ^[rx,ry];

303 }

304

305 returnIndex { // this gets called whenever something is going to be passed to the user

in teh "mouseOverFunc"

306 arg idx ,px ,py; // pass in the index of the data point to be returned and the x, and

y of that data point in pixels

307

308 // if ignore previous == true , check to make sure this index isn ’t the most recent

one. if it is, don ’t pass it again

309 if((idx != lastHovered).or(ignorePrevious.not),{

310 var rx, ry, xindex , yindex , colorindex;

311

312 lastHovered = idx; // set "previous" to be this index

313

314 # rx, ry = this.getrxry(px ,py); // pass in pixel x,y to get normalized x,y

315

316 # xindex , yindex , colorindex = this.getCurrentIndices; // what are the current

vector indicies that are being displayed

317

318 // if the user passed in an idArray , don ’t pass the data point ’s index , pass the

data point ’s id from that idArray

319 if(idArray.notNil ,{

320 var id = idArray[idx];

321 mouseOverFunc.value(id, idx ,rx,ry,xindex ,yindex);

322 },{

323

324 /* evaluate the function the user passed. pass to that function:

325 (0) the index (or id) of the point that was hovered over

326 (1) the normalized x position of the mouse

327 (2) the normalized y position of the mouse

328 (3) the current vector index (i.e., feature) that is displayed on the x axis

329 (4) the current vector index (i.e., feature) that is displayed on the y axis

330 */

331 mouseOverFunc.value(idx ,rx,ry ,xindex ,yindex);

332 });

333 });

334 }

335

336 valueActionXY {

337 arg x, y, normalized = true;

338 if(normalized ,{

339 x = x.linlin(0,1,0, plotView.bounds.width);

340 y = y.linlin(0,1, plotView.bounds.height ,0);

125

341 });

342 this.findClosest(x,y);

343 }

344

345 findClosest {

346 arg x, y;

347 var mousePt = Point(x,y);

348

349 var record_dist = inf;

350 var winner = nil;

351 prCorpus.do({

352 arg corpusItem , i;

353 if(this.filterCheck(corpusItem),{

354 var dist = corpusItem.dispRect.origin.dist(mousePt);

355 if(dist < record_dist ,{

356 record_dist = dist;

357 winner = i;

358 });

359 });

360 });

361

362 if(winner.notNil ,{

363 this.returnIndex(winner ,x,y);

364 });

365 }

366

367 getCurrentIndices {

368 var xindex = axisFeatureIndex.at("X Axis");

369 var yindex = axisFeatureIndex.at("Y Axis");

370 var colorindex = axisFeatureIndex.at("Color");

371 ^[xindex ,yindex ,colorindex];

372 }

373

374 getScaledXYColorFromIndices { // pass in what vector indices are currently being

displayed and a vector and get back the appropriately scaled values

375 arg xindex , yindex , colorindex , vector;

376 var dispx = vector[xindex]. linlin(0,1,0, plotView.bounds.width -circleRadius);

377 var dispy = vector[yindex]. linlin(0,1, plotView.bounds.height -circleRadius ,0);

378 var color = nil;

379 if(colorindex.notNil ,{

380 color = vector[colorindex]. linlin (0,1,0.8,0);// because both 0 and 1 are red...

381 });

382 ^[dispx ,dispy ,color];

383 }

384

385 slewDisplay {

386 arg time = 0.1; // how long should the "slew" take

387 time = max(time ,0.1);

388 Task({

389 var startLocs = List.new; // where all the points are starting from (where they

are right now)

390 var endPts = List.new; // where they will be ending up after they slew

391 var startColors = List.new; // what color the points are right now

392 var endColors = List.new; // what color they will be after the transition

393 var updateTime = 30. reciprocal; // reciprocal of the frame rate for the

animation

394 var n_ = time / updateTime; // how many frames of animation will it take to

complete this transition

395 var currentIndices = this.getCurrentIndices; // what are the currently display

indices (the ones that the user must have just changed to

396

397 prCorpus.do({ // go through each data point

398 arg corpusItem;

399 var endx , endy , endcolor;

400 var color_index = min(2, corpus_dims - 1);

126

401

402 startLocs.add(corpusItem.dispRect.copy); // add to this list where this data

point is currently (where it will be starting from)

403 startColors.add(corpusItem.color); // add to this list what color this data

point is currently (where it will be starting from)

404

405 # endx , endy , endcolor = this.getScaledXYColorFromIndices(// get the values

that this point will be ending up at

406 currentIndices [0], // x

407 currentIndices [1], // y

408 currentIndices[color_index], // color

409 corpusItem.vector

410);

411

412 endPts.add(Point(endx ,endy)); // add to this list where the data point will

end its journey

413 endColors.add(endcolor); // add to this list the color that the data point

will end its journey as

414 });

415

416 n_.do({ // do n_ many frames

417 arg i;

418 var lerp = i.linlin(0,n_ -1,-pi ,0).cos.linlin (-1,1,0,1); // given i, how far

along in the interpolation is the animation

419 prCorpus.do({ // go through each corpus item

420 arg corpusItem , i;

421 var ix = lerp.linlin(0,1, startLocs[i].left ,endPts[i].x); // given the

interpolation amount , what is x

422 var iy = lerp.linlin(0,1, startLocs[i].top ,endPts[i].y); // given the

interpolation amount , what is y

423 corpusItem.dispRect = Rect(ix,iy,circleRadius ,circleRadius); // set this

data point ’s display info to interplation ’s x,y

424 if(corpus_dims > 2,{

425 corpusItem.color = lerp.linlin(0,1, startColors[i],endColors[i]); //

set this data point ’s color to interpolation color

426 });

427 });

428

429 // update display

430 plotView.refresh;

431 // wait some amount of time before running next animation frame

432 updateTime.wait;

433 });

434

435 },AppClock).play;

436 }

437 }

D Code for Section 3.3.1

code/2/TubeControl.sc

1 TubeControl : ImprovModule {

2 /* CLASS VARIABLES AND VARIABLES OF ImprovModule CLASS

3

4 classvar <>server , >toLemur;

5 var inBus , outBus , group , <cavity , <win , winBounds;

6

7 */

8 // these variables probably include the actual variables

9 // of the module and also variables for each of the GUIs

10 var synths , inputs , inputSinks , onSystemLoad , useMasterOuts = false , outNBs ;//, tubes;

11

12 /* METHODS THAT EACH MODULE MUST HAVE:

127

13

14 initClass

15 init {

16 arg inBus_ , outBus_ , group_ , cavity_;

17 inBus = inBus_;

18 outBus = outBus_;

19 group = group_;

20 cavity = cavity_;

21 }

22

23 free

24

25 inBus_

26 outBus_

27

28 pause

29 run

30

31 save

32 load

33

34 */

35

36 *initClass {

37 StartUp.defer {

38

39 }

40 }

41

42 synth {

43 ^nil;

44 }

45

46 init {

47 arg inBus_ , outBus_ , group_ , cavity_ , onSystemLoad_;

48 inBus = inBus_;

49 outBus = outBus_;

50 group = group_;

51 cavity = cavity_;

52 onSystemLoad = onSystemLoad_;

53

54 synths = nil.dup (3);

55 inputs = nil.dup (3);

56 inputSinks = nil.dup(3);

57 outNBs = nil.dup (3);

58 //tubes = ().dup(3);

59

60 this.makeWindow;

61

62 this.addSlider ("Q:", ControlSpec (1,10) ,{

63 arg sl;

64 synths.do(_.set(\q,sl.value));

65 },10,true ,false);

66

67 this.addSlider ("Lag:", ControlSpec (0.5 ,5) ,{

68 arg sl;

69 synths.do(_.set(\lagTime ,sl.value));

70 },4,true ,false ,false);

71

72 /* Button(win ,Rect (0 ,0 ,200,20))

73 .states_ ([["IN PARALLEL",Color.white ,Color.blue],["IN SERIES",Color.blue ,Color.white

]])

74 .action_ ({

75 arg b;

76 if(b.value == 0,{

128

77 this.parallel;

78 },{

79 this.series;

80 });

81 })

82 .addToggleRequestNew(

83 this.getAddress +/+" series",

84 nil ,

85 this ,

86 win

87);*/

88

89 this.addSlider (" series",nil.asSpec ,{

90 arg sl;

91 synths.do(_.set(\series ,sl.value));

92 },0,true ,true);

93

94 Button(win ,Rect (0,0,0,100,20))

95 .states_ ([[" Mod Outs "],[" Master Outs "]])

96 .action_ ({

97 arg but;

98 if(but.value == 0,{

99 this.setUseMasterOuts(false);

100 },{

101 this.setUseMasterOuts(true);

102 });

103

104 })

105 .addToggleRequestNew(

106 this.getAddress +/+" masterOuts",

107 nil ,

108 this ,

109 win

110);

111

112 win.view.decorator.nextLine;

113

114 //***

115 if(onSystemLoad ,{

116 this.loadServer;

117 },{

118 Task({

119 //" task played ". postln;

120 this.loadServer;

121 }).play(AppClock);

122 });

123 //***

124

125 //Task({

126 }

127

128 setUseMasterOuts {

129 arg bool;

130 useMasterOuts = bool;

131 this.setOuts;

132 }

133

134 loadServer {

135 [10 ,8.4166 ,7.5]. do({

136 arg feet , i;

137 var freqSl ,

138 partialSlider ,

139 bpfFreqText ,

140 anaFreqText ,

141 anaPitchText ,

129

142 w,

143 fundamental ,

144 color ,

145 partButs ,

146 volSl ,

147 outNB;

148

149 synths[i] = SynthDef (\ cm_tubeControl ,{

150 arg bpff = 880, q = 10, lagTime = 4, random = 0, inBus , vol = 0, outBus ,

pauseGate = 1, gate = 1, seriesIn , series = 0;

151 var in, sig , maxDel = 0.06, freq , hasFreq;

152 // this lag time on bpff should really be a Slew.kr

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

153 bpff = bpff.lag(lagTime);

154 //bpff = VarLag.kr(bpff ,bpff);

155 q = q.lag (0.1);

156 in = SelectX.ar(series ,[Mix(In.ar(inBus)),Mix(In.ar(seriesIn))]);

157 # freq , hasFreq = Pitch.kr(in);

158 freq = freq * hasFreq;

159 SendReply.kr(Impulse.kr(3) ,’/anaFreq ’++i,freq.lag (0.2));

160 random = random.lag(3);

161 sig = SelectX.ar(random ,[

162 BPF.ar(in,bpff ,q.reciprocal),

163 DelayC.ar(in ,maxDel ,SinOsc.ar (0.01).range(0,maxDel)) // sin freq: 0.01

164]);

165 sig = Compander.ar(sig ,sig ,-45.dbamp ,1,2. reciprocal);

166 sig = Compander.ar(sig ,sig ,-20.dbamp ,1,4. reciprocal);

167 sig = Limiter.ar(sig ,-10. dbamp);

168 sig = sig.tanh.softclip (-1,1);

169 Out.ar(outBus ,sig * vol.dbamp);

170 }).play(group ,[\inBus ,inputs[i],\outBus ,outBus.subBus(i)]);// outBus.subBus(i)]);

171

172 color = [Color.cyan ,Color.yellow ,Color.green][i];

173 fundamental = this.metersToFreq(this.feetToMeters(feet)) / 2;

174 w = CompositeView(win ,Rect (0 ,0 ,244 ,290));

175 w.decorator_(FlowLayout(w.bounds));

176 w.background_(color);

177 StaticText(w,Rect (0 ,0 ,100,20)).string_(feet.round (0.1).asString ++" FOOT TUBE");

178 inputSinks[i] = DragSink(w,Rect (0,0,50,20))

179 .action_ ({

180 arg ds;

181 this.assignInputBus(i,ds);

182 });

183

184 if(inputs[i].notNil ,{

185 inputSinks[i]. object_(inputs[i]);

186 inputSinks[i]. doAction;

187 });

188

189 w.decorator.nextLine;

190

191 server.sync;

192

193 freqSl = EZSlider(w,Rect (0,0,200 ,20) ,"BPF",ControlSpec (50,750 ,\ exp),{

194 arg sl;

195 synths[i].set(\bpff ,sl.value);

196 bpfFreqText.string_ ("BPF Pitch: "++ this.freqToPitchAndCents(sl.value)

);

197 },fundamental);

198

199 freqSl.addHandleRequestNew(

200 this.getAddress +/+" freq "++i,

201 freqSl.controlSpec ,

202 nil ,

203 this ,

130

204 w

205);

206

207 bpfFreqText = StaticText(w,Rect (0 ,0 ,200 ,20));

208 freqSl.doAction;

209 anaFreqText = StaticText(w,Rect (0 ,0 ,200 ,20));

210 anaPitchText = StaticText(w,Rect (0,0,200,20));

211 w.decorator.nextLine;

212

213 Button(w,Rect (0,0,200 ,20))

214 .states_ ([[" Play Specified Partial "],[" Play Randomly",Color.white ,Color.red]])

215 .action_ ({

216 arg b;

217 synths[i].set(\random ,b.value);

218 })

219 .addToggleRequestNew(

220 this.getAddress +/+" random "++i,

221 nil ,

222 this ,

223 w

224);

225

226 w.decorator.nextLine;

227

228 partButs = 13. collect ({

229 arg partial;

230 var freq , button;

231 partial = partial + 1;

232 freq = partial * fundamental;

233 button = Button(w,Rect (0,0,20,20))

234 .states_ ([[partial ,Color.white ,Color.black],

235 [partial ,Color.black ,color]

236])

237 .action_ ({

238 arg but;

239 //" button value ". postln;

240 //but.value.postln;

241 but.value_ (1);

242 defer{freqSl.valueAction_(freq)};

243 partButs.do({

244 arg b;

245 if(b !== but ,{

246 /*" this is not the same button ". postln;

247 b.value.postln ;*/

248 if(b.value != 0,{

249 //" this button is not 0". postln;

250 b.value_ (0)

251 });

252 });

253 });

254 // **

255 //win.bounds.postln;

256 // **

257 })

258 .addToggleRequestNew(

259 this.getAddress +/+" tube "++i++" partial "++ partial ,

260 nil ,

261 this ,

262 w

263);

264 if(partial == 1,{button.doAction });

265 button;

266 });

267

268 partialSlider = EZSlider(w,Rect (0,0,200 ,20) ,"Partial:", ControlSpec (1,10,\lin ,1)

131

,{

269 arg sl;

270 partButs[sl.value -1]. valueAction_ (1);

271 },1,true);

272 partialSlider.addHandleRequestNew(

273 this.getAddress +/+" partialSlider "++i,

274 partialSlider.controlSpec ,

275 nil ,

276 this ,

277 w

278);

279

280 volSl = EZSlider(w,Rect (0 ,0 ,200,20) ,"Vol:",\db.asSpec ,{

281 arg sl;

282 synths[i].set(\vol ,sl.value);

283 },0,false);

284

285 volSl.addHandleRequestNew(

286 this.getAddress +/+" vol"++i,

287 volSl.controlSpec ,

288 nil ,

289 this ,

290 w

291);

292

293 outNB = EZNumber(w,Rect (0 ,0 ,200,20) ,"Out:", ControlSpec (0, cavityMatrix.

nOutChannels -1,step :1) ,{

294 arg nb;

295 //tubes[i]. outChan = nb.value;

296 if(useMasterOuts.not && (nb.value < outBus.numChannels).not ,{

297 // set to max

298 nb.valueAction_(outBus.numChannels -1);

299 },{

300 this.setOuts;

301 });

302 },i);

303 outNB.addHandleRequestNew(

304 this.getAddress +/+" out"++i,

305 outNB.controlSpec ,

306 nil ,

307 this ,

308 w

309);

310

311 outNBs[i] = outNB;

312

313 //tubes[i].outNB = outNB;

314

315 OSCdef (\ anaFreq ++i,{

316 arg msg;

317 var freq;

318 freq = msg [3]. round (0.1);

319 defer{

320 if(freq > 0,{

321 anaFreqText.string_("Analysis Freq: "++ freq);

322 anaPitchText.string_ (" Analysis Pitch: "++ this.freqToPitchAndCents(

freq));

323 },{

324 anaFreqText.string_("Analysis Freq: NONE");

325 anaPitchText.string_ (" Analysis Pitch: NONE");

326 });

327 };

328 },’/anaFreq ’++i);

329 });

330 this.adjustWindowAndFront;

132

331 //}).play(AppClock);

332 }

333

334 setOuts {

335 3.do({

336 arg i;

337 var bus = outNBs[i].value;

338 if(useMasterOuts ,{

339 synths[i].set(\outBus ,bus);

340 },{

341 synths[i].set(\outBus ,outBus.subBus(bus));

342 });

343 });

344 }

345

346 /* parallel {

347 3.do({

348 arg i;

349 synths[i].set(\inBus ,inputs[i]);

350 });

351 }

352

353 series {

354 [2,0,1].do({

355 arg input , i;

356 synths[i].set(\inBus ,inputs[input]);

357 });

358 }*/

359

360 freqToPitchAndCents {

361 arg freq;

362 ^(freq.cpsname+this.centsOff(freq)+"cents ");

363 }

364

365 centsOff {

366 arg freq;

367 var freqs = (0..127).midicps;

368 var name = (freqs [(freqs -freq).abs.minIndex]).cpsname;

369 var closestFreq = name.namecps;

370 var cents = (freq/closestFreq).log2 * 1200;

371 cents = cents.round (1);

372 if(cents > 0,{cents = "+"++ cents.asString},{cents = cents.asString });

373 ^cents;

374 }

375

376 metersToFreq {

377 arg meters;

378 var speed = 340.29; // m/s

379 var freq = speed / meters;

380 /*"". postln;

381 meters.post; " meters =>". postln;

382 freq.round (0.01).post; " Hz". postln;

383 freq.cpsname.post; " ".post; (this.centsOff .(freq)+" cents").postln;

384 "". postln ;*/

385 ^freq;

386 }

387

388 feetToMeters {

389 arg feet;

390 ^(feet * 0.3048);

391 }

392

393 nameToMeters {

394 arg name;

395 var speed = 340.29; // m/s

133

396 var freq = name.namecps;

397 var meters = speed / freq;

398 ^meters.round (0.0001);

399 }

400

401 free {

402 this.removeAllAssignments;

403 synths.do(_.set(\gate ,0));

404 win.close;

405 }

406

407 inBus_ {

408 arg inBus_;

409 inBus = inBus_;

410 //synth.set(\inBus ,inBus)

411 }

412

413 outBus_ {

414 arg outBus_;

415 outBus = outBus_;

416 this.setOuts;

417 /* synths.do({

418 arg sy, i;

419 //sy.postln;

420 // outBus.subBus(i).postln;

421 sy.set(\outBus ,outBus.subBus(i));

422 });*/

423 }

424

425 pause {

426 synths.do(_.set(\pauseGate ,0));

427 }

428

429 run {

430 if(synths.size > 0,{

431 synths.do({

432 arg sy;

433 if(sy.notNil ,{sy.run; sy.set(\pauseGate ,1)});

434 });

435 });

436 }

437

438 save {

439 var dict;

440

441 dict = super.save;

442 3.do({

443 arg i;

444 dict.put(\ input++i,inputs[i]);

445 });

446

447 /* dict.put(\outChans ,

448 tubes.collect ({

449 arg t;

450 t.outNB.value;

451 });

452);*/

453

454 ^dict;

455 }

456

457 load {

458 arg dict;

459 //Task({

460 //1. wait;

134

461 3.do({

462 arg i;

463 //(" input "+i+"bus"+dict.at(\ input++i)).postln;

464 dict.at(\input++i) !? ({

465 arg input;

466 inputs[i] = input;

467 if(inputSinks[i].notNil ,{

468 inputSinks[i]. object_(inputs[i]);

469 inputSinks[i]. doAction;

470 });

471 });

472 });

473

474 super.load(dict);

475

476 /* dict.at(\ outChans) !? ({

477 3.do({

478 arg i;

479 tubes[i].outNB.valueAction_(dict.at(\ outChans)[i]);

480 });

481 });*/

482 //}).play(AppClock);

483 }

484

485 assignInputBus {

486 arg i, ds;

487 //(" input sink"+i+" action done").postln;

488 inputs[i] = ds.object;

489 synths[i].set(\inBus ,inputs[i]);

490 synths [(i+1) % 3].set(\seriesIn ,inputs[i]);

491 if(ds.object.notNil ,{

492 ds.string_(InputBusAssign.getBusName(ds.object));

493 });

494 }

495

496 /* OPTIONAL CLASSES FOR INTERFACING WITH LEMUR

497

498 lemurX

499 lemurY

500 lemurControlPad

501 */

502

503 lemurX {

504 arg x;

505 }

506

507 lemurY {

508 arg y;

509 }

510

511 lemurControlPad {

512 arg cp;

513 }

514 }

code/2/feedback control.sc

1 FdbkControl : ImprovModule {

2 /* CLASS VARIABLES AND VARIABLES OF ImprovModule CLASS

3

4 classvar <>server , >toLemur;

5 var inBus , outBus , group , <cavity , <win , winBounds;

6

7 */

8 var privateBus ,filterGroup ,inSynth ,outSynth ,threshold ,mySpectrogram ,magsTask ,dict ,

135

waitMin , waitMax , controlling , dbDown , fadeTime , updateWaitTime;

9

10 /* METHODS THAT EACH MODULE MUST HAVE:

11

12 initClass

13 init {

14 arg inBus_ , outBus_ , group_ , cavity_;

15 inBus = inBus_;

16 outBus = outBus_;

17 group = group_;

18 cavity = cavity_;

19 }

20

21 free

22

23 inBus_

24 outBus_

25

26 pause

27 run

28

29 save

30 load

31

32 */

33

34 *initClass {

35 StartUp.defer {

36 SynthDef (\ cm_feedbackFilterer_in ,{

37 arg privateBus ,inBus , hpfreq = 240, lpfreq = 1200;

38 var /*env ,*/ sig; // hpfreq was at 240

39 // *****************

40 sig = Mix(In.ar(inBus ,4));

41 //sig = SoundIn.ar(1);

42 // *****************

43 sig = HPF.ar(HPF.ar(HPF.ar(sig ,hpfreq),hpfreq),hpfreq);

44 sig = LPF.ar(LPF.ar(LPF.ar(sig ,lpfreq),lpfreq),lpfreq);

45 //sig = sig * env.dbamp;

46 sig = Limiter.ar(sig);

47 Out.ar(privateBus ,sig);

48 }).writeDefFile;

49

50 SynthDef (\ cm_feedbackFilterer_notch ,{

51 arg freq ,outBus ,waitTime , dbDown , fadeTime;

52 var in, dB;

53 in = In.ar(outBus);

54 //dB = Line.kr(0,-2,4);

55 dB = EnvGen.kr(Env([0,dbDown ,dbDown ,0],[fadeTime ,waitTime -fadeTime ,2]),

doneAction :2);

56 in = BPeakEQ.ar(in ,freq ,0.05,dB);

57 ReplaceOut.ar(outBus ,in);

58 }).writeDefFile;

59

60 SynthDef (\ cm_feedbackFilterer_out ,{

61 arg outBus ,privateBus ,gate = 1,pauseGate = 1;

62 var sig , maxDelay = 0.2;

63 sig = In.ar(privateBus ,1);

64 sig = sig.dup(4);

65 sig = Limiter.ar(sig);

66 sig = sig * EnvGen.kr(Env.asr (0.03 ,1 ,0.03),gate ,doneAction :2);

67 sig = sig * EnvGen.kr(Env.asr (0.03 ,1 ,0.03),pauseGate ,doneAction :1);

68 Out.ar(outBus ,sig);

69 }).writeDefFile;

70 }

71 }

136

72

73 synth {

74 ^nil;

75 }

76

77 init {

78 arg inBus_ , outBus_ , group_ , cavity_;

79 inBus = inBus_;

80 outBus = outBus_;

81 group = group_;

82 cavity = cavity_;

83

84 threshold = 5;

85 privateBus = Bus.audio(server ,1);

86 filterGroup = Group(group);

87 dict = Dictionary.new;

88 controlling = true;

89 dbDown = -2;

90 fadeTime = 4;

91

92 inSynth = Synth (\ cm_feedbackFilterer_in ,[\ privateBus ,privateBus ,\inBus ,inBus],

filterGroup ,\ addBefore);

93

94 //Task({

95 //2. wait;

96 mySpectrogram = MySpectrogram(privateBus ,nil ,nil ,inSynth ,\addAfter ,false);

97 //2. wait;

98

99 outSynth = Synth(\ cm_feedbackFilterer_out ,[\outBus ,outBus ,\privateBus ,privateBus],

filterGroup ,\ addAfter);

100

101 //2. wait;

102

103 magsTask = Task({

104 inf.do({

105 arg i;

106 //i.postln;

107 if(mySpectrogram.magsArray.notNil && controlling ,{

108 var v = mySpectrogram.magsArray;

109 v = v + 1;

110 if(mySpectrogram.magsArray.maxItem > threshold ,{

111 var f = mySpectrogram.freqBuf.get(

112 mySpectrogram.magsArray.indexOf(

113 mySpectrogram.magsArray.maxItem

114),{

115 arg v;

116 //v.postln;

117 if(dict.keys.includes(v).not ,{

118 var waitTime;

119 waitTime = rrand(waitMin ,waitMax);

120 //v.postln;

121 //dict.keys.size.postln;

122 dict.put(v,

123 Synth(\ cm_feedbackFilterer_notch ,[

124 \freq ,v,

125 \outBus ,privateBus ,

126 \waitTime ,waitTime ,

127 \dbDown ,dbDown ,

128 \fadeTime ,fadeTime

129],filterGroup);

130);

131 AppClock.sched(waitTime ,{

132 dict.removeAt(v);

133 nil;

134 });

137

135 });

136

137 });

138 });

139 });

140 updateWaitTime.wait;

141 });

142 },AppClock);

143

144 magsTask.play;

145

146 //}).play(AppClock);

147

148 this.makeWindow;

149

150 Button(win ,Rect (0,0,180,20))

151 .states_ ([[" Controlling",Color.black ,Color.green],["Not Controlling",Color.black ,

Color.yellow]])

152 .action_ ({

153 arg b;

154 if(b.value == 0,{

155 controlling = true;

156 },{

157 controlling = false;

158 });

159 })

160 .addToggleRequestNew(

161 this.getAddress +/+" controlling",

162 nil ,

163 this ,

164 win

165);

166

167 win.view.decorator.nextLine;

168

169 this.addSlider (" hpfreq",\freq.asSpec ,{

170 arg sl;

171 inSynth.set(\hpfreq ,sl.value);

172 },240,true ,true ,true);

173

174 this.addSlider (" lpfreq",\freq.asSpec ,{

175 arg sl;

176 inSynth.set(\lpfreq ,sl.value);

177 },1200,true ,true ,true);

178

179 this.addSlider (" dbDown",\db.asSpec ,{

180 arg sl;

181 dbDown = sl.value;

182 filterGroup.set(\dbDown ,dbDown);

183 },-2,true ,true ,true);

184

185 this.addSlider (" fadeTime",ControlSpec (1 ,12) ,{

186 arg sl;

187 fadeTime = sl.value;

188 filterGroup.set(\fadeTime ,fadeTime);

189 },4,true ,true ,true);

190

191 this.addSlider (" updateWait",ControlSpec (0.1 ,1) ,{

192 arg sl;

193 updateWaitTime = sl.value;

194 },0.1,true ,true ,true);

195

196 this.addSlider (" waitMin",ControlSpec (1,50) ,{

197 arg sl;

198 waitMin = sl.value;

138

199 },12,true ,true ,true);

200

201 this.addSlider (" waitMax",ControlSpec (1,50) ,{

202 arg sl;

203 waitMax = sl.value;

204 },15,true ,true ,true);

205

206 this.adjustWindowAndFront;

207 }

208

209 free {

210 this.removeAllAssignments;

211 outSynth.set(\gate ,0);

212 inSynth.free;

213 mySpectrogram.free;

214 AppClock.sched (0.04 ,{

215 // inSynth.free;

216 filterGroup.free;

217 nil;

218 });

219 win.close;

220 }

221

222 inBus_ {

223 arg inBus_;

224 inBus = inBus_;

225 inSynth.set(\inBus ,inBus)

226 }

227

228 outBus_ {

229 arg outBus_;

230 outBus = outBus_;

231 outSynth.set(\outBus ,outBus);

232 }

233

234 pause {

235 outSynth.set(\pauseGate ,0);

236 AppClock.sched (0.1 ,{

237 inSynth.run(false);

238 filterGroup.run(false);

239 nil;

240 });

241 }

242

243 run {

244 inSynth.run;

245 filterGroup.run;

246 AppClock.sched (0.04 ,{

247 outSynth.run;

248 outSynth.set(\pauseGate ,1);

249 nil;

250 });

251 }

252

253 /* save {

254 var saves;

255 saves = Dictionary.new;

256

257 ^saves;

258 }

259

260 load {

261 arg saves;

262 }*/

263

139

264 /* OPTIONAL CLASSES FOR INTERFACING WITH LEMUR

265

266 lemurX

267 lemurY

268 lemurControlPad

269 */

270

271 lemurX {

272 arg x;

273 }

274

275 lemurY {

276 arg y;

277 }

278

279 lemurControlPad {

280 arg cp;

281 }

282 }

code/2/feedback amplification mod.sc

1 TptFdbk : ImprovModule {

2 /* CLASS VARIABLES AND VARIABLES OF ImprovModule CLASS

3

4 classvar <>server , >toLemur;

5 var inBus , outBus , group , <cavity , <win , winBounds;

6

7 */

8 // these variables probably include the actual variables

9 // of the module and also variables for each of the GUIs

10 var <synth;

11

12 /* METHODS THAT EACH MODULE MUST HAVE:

13

14 initClass

15 init {

16 arg inBus_ , outBus_ , group_ , cavity_;

17 inBus = inBus_;

18 outBus = outBus_;

19 group = group_;

20 cavity = cavity_;

21 }

22

23 free

24

25 inBus_

26 outBus_

27

28 pause

29 run

30

31 save

32 load

33

34 */

35

36 *initClass {

37 StartUp.defer {

38 SynthDef (\ cm_feedback_4Chan ,{

39 arg mix = 1, inBus , outBus , gate , pauseGate , hpfreq = 400;

40 var in, sig , amCoef , amount = 0.99;

41 in = HPF.ar(In.ar(inBus ,4), hpfreq)*5;

42

43 amCoef = 2* amount /(1- amount);

140

44 sig = MidEQ.ar(

45 LPF.ar((1+ amCoef)*in/(1+(amCoef*in.abs)) ,[3800, 3900]) *0.5,

46 120,

47 0.7,

48 8

49);

50 //sig * -24. dbamp;

51 sig = SelectX.ar(mix ,[in,sig]);

52 Out.ar(outBus ,sig);

53 }).writeDefFile;

54 }

55 }

56

57 init {

58 arg inBus_ , outBus_ , group_ , cavity_;

59 inBus = inBus_;

60 outBus = outBus_;

61 group = group_;

62 cavity = cavity_;

63

64 synth = Synth (\ cm_feedback_4Chan ,[\inBus ,inBus ,\outBus ,outBus ,\gate ,1,\pauseGate ,1],

group);

65

66 this.makeWindow;

67

68 this.addSlider (" hpfreq",\freq.asSpec ,{

69 arg sl;

70 synth.set(\hpfreq ,sl.value);

71 },400,true ,false ,true);

72

73 this.adjustWindowAndFront;

74 }

75

76 free {

77 this.removeAllAssignments;

78 synth.set(\gate ,0);

79 //win.close;

80 }

81

82 inBus_ {

83 arg inBus_;

84 inBus = inBus_;

85 synth.set(\inBus ,inBus)

86 }

87

88 outBus_ {

89 arg outBus_;

90 outBus = outBus_;

91 synth.set(\outBus ,outBus);

92 }

93

94 pause {

95 synth.set(\pauseGate ,0);

96 }

97

98 run {

99 synth.run;

100 synth.set(\pauseGate ,1);

101 }

102

103 /* save {

104 var saves;

105 saves = Dictionary.new;

106

107 ^saves;

141

108 }

109

110 load {

111 arg saves;

112 }*/

113

114 /* OPTIONAL CLASSES FOR INTERFACING WITH LEMUR

115

116 lemurX

117 lemurY

118 lemurControlPad

119 */

120

121 lemurX {

122 arg x;

123 }

124

125 lemurY {

126 arg y;

127 }

128

129 lemurControlPad {

130 arg cp;

131 }

132 }

E Code for Section 3.3.2

code/3/02 descriptors extraction func.scd

1 (

2 ~extract_from_buf = {

3 arg buf_path , slice_sec = 0.05, n_servers = 1, final_action;

4 var stamp = Date.localtime.stamp;

5 var prefix = PathName(buf_path).fileNameWithoutExtension;

6 var wav_file_name = PathName(buf_path).fileName;

7 var dsID_to_wavename_dict = Dictionary.new;

8 var new_folder = PathName(buf_path).pathOnly +/+"%_%". format(stamp ,prefix);

9 var new_ds_folder = new_folder +/+"ds";

10 var new_loc_ds_folder = new_folder +/+" loc_ds ";

11 var sR = SoundFile.use(buf_path ,{arg sf;sf.sampleRate });

12 var buf_dur = SoundFile.use(buf_path ,{arg sf; sf.duration });

13 var n_slices = (buf_dur / slice_sec).floor.asInteger;

14 var full_array = Array.fill(n_slices ,{

15 arg i;

16 var ds_id = "%-%". format(prefix ,i.asInteger);

17 var start_sec = i * slice_sec;

18 dsID_to_wavename_dict.put(ds_id ,wav_file_name);

19 [ds_id , start_sec * sR , slice_sec * sR]; // id int , start frames , num frames

20 });

21 var n_derivs = 2; // it’s really one though ...

22 var statsFlatComp = {

23 arg featuresBuf ,statsBuf ,flatBuf ,masterBuf ,masterBufOffset ,numDerivs=2,action;

24 FluidBufStats.processBlocking(featuresBuf.server ,featuresBuf ,stats:statsBuf ,

numDerivs:numDerivs -1,action :{

25 FluidBufFlatten.processBlocking(featuresBuf.server ,statsBuf ,flatBuf ,action :{

26 FluidBufCompose.processBlocking(featuresBuf.server ,flatBuf ,destination:

masterBuf ,destStartFrame:masterBufOffset ,action :{

27 action.value;

28 });

29 });

30 });

31 };

32 var analyze = {

142

33 arg id, start_frame , num_frames , buf , featuresBuf ,statsBuf , flatBuf ,finalBuf , ds ,

cond;

34

35 FluidBufSpectralShape.processBlocking(buf.server ,buf ,start_frame ,num_frames ,features

:featuresBuf ,action :{

36 statsFlatComp .(featuresBuf ,statsBuf ,flatBuf ,finalBuf ,0,n_derivs ,{

37 FluidBufPitch.processBlocking(buf.server ,buf ,start_frame ,num_frames ,features

:featuresBuf ,action :{

38 statsFlatComp .(featuresBuf ,statsBuf ,flatBuf ,finalBuf ,98,n_derivs ,{ // 98

= 7*7*2

39 FluidBufLoudness.processBlocking(buf.server ,buf ,start_frame ,

num_frames ,features:featuresBuf ,action :{

40 statsFlatComp .(featuresBuf ,statsBuf ,flatBuf ,finalBuf ,126,

n_derivs ,{ // 126 = 98 + 28; // 28 = (2*7*2)

41 FluidBufMFCC.processBlocking(buf.server ,buf ,start_frame ,

num_frames ,features:featuresBuf ,numCoeffs :40, action :{

42 statsFlatComp .(featuresBuf ,statsBuf ,flatBuf ,finalBuf

,154, n_derivs ,{// 154=126+28; // 28=(2*7*2) //

43 ds.addPoint(id,finalBuf ,{

44 cond.unhang;

45 });

46 });

47 });

48 });

49 });

50 });

51 });

52 });

53 });

54 };

55 var server_options = ServerOptions.new;

56 var entries_per_sub = (full_array.size / n_servers).ceil.asInteger;

57 // var sub_arrays = full_array.clump(entries_per_sub);

58 var sub_arrays = List.new.dup(n_servers);

59 var headers_expander = {

60 arg header_list;

61 var out_headers = List.new;

62 n_derivs.do({

63 arg deriv_num;

64 ["mean","stddev","skewness","kurtosis","min","median","max"].do({

65 arg stat;

66 header_list.do({

67 arg desc;

68 out_headers.add("%-deriv %-%". format(desc ,deriv_num ,stat));

69 });

70 });

71 });

72 out_headers;

73 };

74 var finalHeaders = List.new;

75 var buffer2mono = {

76 arg buf , action;

77 if(buf.numChannels > 1,{

78 Routine{

79 var new_buf = Buffer(buf.server);

80 var total_chans = buf.numChannels;

81 buf.server.sync;

82 total_chans.do({

83 arg i;

84 FluidBufCompose.process(buf.server ,buf ,startChan:i,numChans:1,gain:

total_chans.reciprocal ,destination:new_buf ,destGain :1);

85 buf.server.sync;

86 });

87 buf.free;

88 action .(new_buf);

143

89 }.play;

90 },{

91 action .(buf);

92 });

93 };

94

95 full_array.do({

96 arg pt, i;

97 sub_arrays[i % n_servers].add(pt);

98 });

99

100 server_options.device_ (" Fireface UC Mac (24006457) ");

101

102 full_array.size.postln;

103 sub_arrays.do({arg sa; sa.size.postln });

104

105 finalHeaders.addAll(headers_expander .([

106 "specCentroid",

107 "specSpread",

108 "specSkewness",

109 "specKurtosis",

110 "specRolloff",

111 "specFlatness",

112 "specCrest"

113]));

114

115 finalHeaders.addAll(headers_expander .([" pitch"," pitchConf "]));

116

117 finalHeaders.addAll(headers_expander .([" loudness","truePeak "]));

118

119 finalHeaders.addAll(headers_expander .(Array.fill (40,{

120 arg i;

121 "mfcc %". format(i.asString.padLeft (2 ,"0"));

122 })));

123

124 finalHeaders = finalHeaders.collect ({

125 arg head , i;

126 [i,head];

127 });

128

129 File.mkdir(new_folder);

130 File.mkdir(new_ds_folder);

131 File.mkdir(new_loc_ds_folder);

132 ArrayToCSV(finalHeaders ,new_folder +/+"%_%_headers.csv". format(stamp ,prefix));

133 dsID_to_wavename_dict.writeArchive(new_folder +/+" dsID_to_wavename_dict.sco");

134

135 n_servers.do{

136 arg server_i;

137 var server = Server ("Server -% -%". format(server_i ,UniqueID.next).asSymbol ,NetAddr ("

localhost " ,57121 + server_i),server_options);

138 server.waitForBoot{

139 Routine{

140 var features_buf = Buffer(server);

141 var stats_buf = Buffer(server);

142 var flat_buf = Buffer(server);

143 var final_buf = Buffer(server);

144 var ds_ = FluidDataSet(server);

145 var start_dur_ds = FluidDataSet(server);

146 var start_dur_buf = Buffer.alloc(server ,2);

147 var whole_buf = Buffer.read(server ,buf_path);

148 var array = sub_arrays[server_i];

149 var dspath = new_ds_folder +/+"%_%_server =%. json". format(stamp ,prefix ,

server_i);

150 var start_dur_path = new_loc_ds_folder +/+"%_%_server =% _start_dur.json".

format(stamp ,prefix ,server_i);

144

151

152 server.sync;

153

154 "whole buf loaded ". postln;

155

156 buffer2mono .(whole_buf ,{

157 arg buf;

158 "mono buf made". postln;

159 array.do({

160 arg pt, i;

161 var cond = Condition.new;

162 var pt_label = pt[0];

163 start_dur_buf.setn(0,[pt[1],pt[2]]);

164 server.sync;

165 start_dur_ds.addPoint(pt_label ,start_dur_buf ,{

166 analyze .(pt_label ,pt[1],pt[2],buf ,features_buf ,stats_buf ,

flat_buf ,final_buf ,ds_ ,cond);

167 });

168 cond.hang;

169 "id: % / %\t\t% / %". format(pt_label ,full_array.size ,i,array.size).

postln;

170 });

171

172 ds_.write(dspath ,{

173 start_dur_ds.write(start_dur_path ,{

174 // ds_.print;

175 // finalHeaders.postln;

176 // finalHeaders.size.postln;

177 /*" started: %". format(stamp);

178 "finished: %". format(Date.localtime.stamp);

179 */

180 Routine{

181 server.quit;

182 10. wait;

183 if(server_i == 0,{

184 final_action.value;

185 });

186 }.play;

187 });

188 });

189 });

190 }.play;

191 };

192 };

193 };

194);

code/3/03 descriptors extraction.scd

1 (

2 ~files = [

3 /* "/ Volumes/Ted ’s 10TB My Book (June 2020)/Research/machine learning/timbral_space_mapping

/benjolin/outputs /210319 _125601/chunk_1_MONO.wav",

4 "/ Volumes/Ted ’s 10TB My Book (June 2020)/Research/machine learning/timbral_space_mapping

/benjolin/outputs /210319 _125601/chunk_2_MONO.wav",*/

5 "/ Volumes/Ted ’s 10TB My Book (June 2020)/Research/machine learning/timbral_space_mapping

/benjolin/outputs /210319 _125601/chunk_3_MONO.wav",

6 "/ Volumes/Ted ’s 10TB My Book (June 2020)/Research/machine learning/timbral_space_mapping

/benjolin/outputs /210319 _125601/chunk_4_MONO.wav"

7];

8

9 ~f_r = {

10 arg array , idx = 0;

11 if(idx < array.size ,{

12 ~extract_from_buf .(array[idx],1,3,{

145

13 ~f_r.(array ,idx +1);

14 });

15 });

16 };

17)

18

19 (

20 ~f_r.(~ files);

21)

code/3/04 compile ds.scd

1 (

2 s.options.device_ (" Fireface UC Mac (24006457) ");

3 s.waitForBoot{

4 var folders = [

5 "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/media/wavs/

_analyses_210412_02_sliceSize =0.1/210412 _151245_210408_221536_creatures_tj /",

6 "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/media/wavs/

_analyses_210412_02_sliceSize =0.1/210412 _151644_210408_221536_shoe_squeak_tj /"

7];

8

9 var out_folder = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/media/

wavs/_analyses_210412_02_sliceSize =0.1/ _selections_for_creatures_tj /";

10

11 Routine{

12 var master_ds = FluidDataSet(s);

13 var master_loc_ds = FluidDataSet(s);

14 var temp_ds = FluidDataSet(s);

15 var master_ds_id_to_wavname = Dictionary.new;

16

17 s.sync;

18

19 folders.do({

20 arg folder , i;

21 var dsid2wav = Object.readArchive(folder +/+" dsID_to_wavename_dict.sco");

22

23 folder.postln;

24

25 dsid2wav.keysValuesDo ({

26 arg key , val;

27 master_ds_id_to_wavname.put(key ,val);

28 });

29

30 PathName(folder +/+"ds/").filesDo ({

31 arg file , j;

32 var cond = Condition.new;

33

34 "---%".format(file.fullPath).postln;

35

36 if((i == 0) && (j == 0) ,{

37 master_ds.read(file.fullPath ,{cond.unhang });

38 },{

39 temp_ds.read(file.fullPath ,{

40 master_ds.merge(temp_ds ,0,{

41 cond.unhang;

42 });

43 });

44 });

45 cond.hang;

46 });

47

48 PathName(folder +/+" loc_ds /").filesDo ({

49 arg file , j;

50 var cond = Condition.new;

146

51

52 "---%".format(file.fullPath).postln;

53

54 if((i == 0) && (j == 0) ,{

55 master_loc_ds.read(file.fullPath ,{cond.unhang });

56 },{

57 temp_ds.read(file.fullPath ,{

58 master_loc_ds.merge(temp_ds ,0,{

59 cond.unhang;

60 });

61 });

62 });

63 cond.hang;

64 });

65 });

66

67 File.mkdir(out_folder);

68

69 master_ds.write(out_folder +/+"ds.json",{

70 master_loc_ds.write(out_folder +/+" loc_ds.json",{

71 master_ds_id_to_wavname.writeArchive(out_folder +/+" ds_id_to_wavname.sco");

72 ArrayToCSV(folders ,out_folder +/+" all_input_folders.csv");

73 "done". postln;

74 });

75 });

76 }.play;

77 };

78)

code/3/05 dim reduction.scd

1 (

2 s.options.device_ (" Fireface UC Mac (24006457) ");

3 s.waitForBoot{

4 Routine{

5 var compiled_folder = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/

media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only /";

6

7 var loudness_thresh = -60;

8 // SpecShape pitch , pitchCon , mfcc 1-9

9 //var select_cols = (0..6) ++ [98 ,99] ++ (155..163);

10 var select_cols = (0..713);

11

12 var ds = FluidDataSet(s);

13 var scaler = FluidStandardize(s);

14 var dsq = FluidDataSetQuery(s);

15 var pcaDims = 35;

16 var pca = FluidPCA(s,pcaDims);

17 var umapDims = 1;

18 var umapNeighbors = 30;

19 var umapMinDist = 0.5;

20 var umap = FluidUMAP(s,umapDims ,umapNeighbors ,umapMinDist);

21

22 s.sync;

23

24 ds.read(compiled_folder +/+"ds.json",{

25 ds.cols({

26 arg n_cols;

27 dsq.addRange(0,n_cols ,{

28 dsq.filter (126,">", loudness_thresh ,{

29 dsq.transform(ds ,ds ,{

30 ds.size({

31 arg size;

32 "size after loudness filter: %". format(size).postln;

33 dsq.clear({

147

34 Routine{

35 select_cols.do({

36 arg col;

37 dsq.addColumn(col);

38 s.sync;

39 });

40

41 dsq.transform(ds ,ds ,{

42 scaler.fitTransform(ds ,ds ,{

43 pca.fitTransform(ds ,ds ,{

44 "pca done". postln;

45 umap.fitTransform(ds,ds ,{

46 "umap done". postln;

47 ds.write(compiled_folder +/+"% _pca

=%-%-%.json". format(Date.

localtime.stamp ,umapDims ,

umapNeighbors ,umapMinDist));

48 });

49 });

50 });

51 });

52 }.play;

53 });

54 });

55 });

56 });

57 });

58 });

59 });

60 }.play;

61 };

62)

code/3/13 sort umap1.scd

1 (

2 ~restart_oscdef.value;

3 s.waitForBoot{

4 Routine{

5 var loc_ds_path = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/

media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only/loc_ds.json";

6 var ds_path = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/media/

wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only /210415 _232342_umap

=1 -30 -0.5. json";

7 var ds_id_to_wavname_path = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/

SWITCH/media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only/

ds_id_to_wavname.sco";

8

9 var ds = FluidDataSet(s);

10 var loc_ds = FluidDataSet(s);

11

12 s.sync;

13

14 loc_ds.read(loc_ds_path ,{

15 loc_ds.dump({

16 arg loc_dict;

17 ds.read(ds_path ,{

18 ds.dump({

19 arg dict;

20 var pts = Array.newClear(dict.at("data").size);

21 var ds_d_to_wavname = Object.readArchive(ds_id_to_wavname_path);

22

23 dict.at("data").keysValuesDo ({

24 arg key , val , i;

25 pts[i] = [val[0],key];

148

26 });

27

28 pts.sort({

29 arg a, b;

30 a[0] < b[0];

31 });

32

33 pts.postln;

34

35 Routine{

36 var start_pct = 0.0, end_pct = 1;

37 var start = (pts.size * start_pct).asInteger;

38 var end = (pts.size * end_pct).asInteger - 1;

39 pts[start..end].do({

40 arg array , i;

41 var loc = (i % 4) + 2;

42 var id = array [1];

43 ~playID .(id,ds_d_to_wavname ,loc_dict ,loc:loc);

44 0.02. wait;

45 });

46 }.play;

47 });

48 })

49 });

50 });

51 }.play;

52 }

53)

code/3/14 pca.scd

1 (

2 s.options.device_ (" Fireface UC Mac (24006457) ");

3 s.waitForBoot{

4 Routine{

5 var compiled_folder = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/

media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only /";

6

7 var loudness_thresh = -60;

8

9 var ds = FluidDataSet(s);

10 var scaler = FluidStandardize(s);

11 var dsq = FluidDataSetQuery(s);

12 var pcaDims = 11;

13 var pca = FluidPCA(s,pcaDims);

14

15 s.sync;

16

17 ds.read(compiled_folder +/+"ds.json",{

18 ds.cols({

19 arg n_cols;

20 dsq.addRange(0,n_cols ,{

21 dsq.filter (126,">", loudness_thresh ,{

22 dsq.transform(ds ,ds ,{

23 ds.size({

24 arg size;

25 "size after loudness filter: %". format(size).postln;

26 scaler.fitTransform(ds ,ds ,{

27 pca.fitTransform(ds ,ds ,{

28 var pts = List.new , labels = List.new , stamp = Date.

localtime.stamp;

29 "pca done". postln;

30 ds.write(compiled_folder +/+"% _pca=%_ds.json". format(

stamp ,pcaDims));

31 pca.write(compiled_folder +/+"% _pca=%_pca.json".

149

format(stamp ,pcaDims));

32 ds.dump({

33 arg dict;

34 dict.at("data").keysValuesDo ({

35 arg key , val;

36 labels.add(key);

37 pts.add(val);

38 });

39 ArrayToCSV(labels ,compiled_folder +/+"% _pca=%

_labels.csv". format(stamp ,pcaDims));

40 ArrayToCSV(pts ,compiled_folder +/+"% _pca=%_pts.

csv". format(stamp ,pcaDims));

41 });

42

43 /*pca.dump({

44 arg dict;

45 dict.postln;

46 });*/

47 });

48 });

49 });

50 });

51

52 });

53 });

54 });

55 });

56 }.play;

57 };

58)

code/3/15 tsp to sound.scd

1 (

2 ~restart_oscdef.value;

3 s.waitForBoot{

4 Routine{

5 var pythonOutPath = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/

media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only /210416 _004952_pca

=11 _pts_tspOutput.csv";

6 var label_order_path = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH

/media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only /210416

_004952_pca =11 _labels.csv";

7 var ds_id_to_wavname_path = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/

SWITCH/media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only/

ds_id_to_wavname.sco";

8 var loc_ds_path = "/ Volumes/Ted ’s 10TB My Book (June 2020)/PROJECT FILES/SWITCH/

media/wavs/_analyses_210412_02_sliceSize =0.1/ _instruments_only/loc_ds.json";

9

10 var loc_dict;

11 var loc_ds = FluidDataSet(s);

12 var ds_id_to_wavname = Object.readArchive(ds_id_to_wavname_path);

13

14 var pythonOutData = CSVFileReader.readInterpret(pythonOutPath ,true);

15 var label_order = CSVFileReader.read(label_order_path ,true);

16 var orderedFrames = pythonOutData [0];

17 var distances = pythonOutData [1];

18 var tsp_label_order = Array.newClear(orderedFrames.size);

19

20 s.sync;

21

22 loc_ds.read(loc_ds_path ,{

23 loc_ds.dump({

24 arg loc_dict;

25

150

26 tsp_label_order = orderedFrames.collect ({

27 arg idx;

28 label_order[idx][0];

29 });

30

31 Routine{

32 // var waitTime = (30. reciprocal / 4);

33 tsp_label_order.do({

34 arg id, i;

35 var loc = (i % 4) + 2;

36 ~playID .(id,ds_id_to_wavname ,loc_dict ,0.1,loc:loc);

37

38 0.02. wait;

39

40 });

41 }.play;

42 });

43 });

44 }.play

45 }

46)

151

	Introduction
	The many faces of Assistants and Collaborators

	Recognizing the Collaborator: Emergent Agency in Complex Systems
	What do we mean when we say Artificial Intelligence?: Towards a Phenomenological Definition
	The Pursuit of Contingency, or, the Desire for a Collaborator
	Emergence of Agency in Complex Systems, or, Recognizing the Collaborator
	Separation of the System from the User
	The Role of Complexity
	Mirroring, or, Recognizing Oneself in the Collaborator

	Conclusion

	Practice-based Research in AI for Music Making
	Using Audio Descriptors
	Artificial Intelligence as Assistant
	Timbral Classification for Sound-to-Light Parameter Mapping
	Frequency Modulation Resynthesis

	Artificial Intelligence as Collaborator
	The harmonic series strikes again: emergent tonality in feedback resonant tubes
	Creating Hamiltonian Paths for Phrase and Form Generation

	Conclusion: Human-AI Alignment
	A few brief answers to the question ``Why?''
	The Optimization Problem (aka. Composing)
	Human-AI Alignment
	Approaching the Optimization Problem with Randomness
	Approaching the Optimization Problem with a Complex System
	Approaching the Optimization Problem with Machine Learning

	The Sweet Spot of Alignment: Assistants and Collaborators
	Conclusion

	References
	Appendices
	Code for SynthMIRNRT
	Code for Section 3.2.1
	Code for Section 3.2.2
	Code for Section 3.3.1
	Code for Section 3.3.2

