Machine Learning Applications for Live Computer Music Performance

Ted Moore, Doctoral Fellow Music Composition University of Chicago Digital Media Workshop, Fall 2019

My Practice

- Composer (electronics + acoustic instruments)
- Improviser (electronics w/ acoustic collaborators)
- Coder (SuperCollider, Processing, openFrameworks, Python)
- Theatrical Sound Designer
- Aesthetics: noise, improvisation, glitch

Interest in Machine Learning

- Music Information Retrieval workshop at CCRMA summer 2018
- In what new ways can I approach sound?
- What can an algorithm do for (with) me? What can it tell me?
- Computational thinking
- What other routes are there to the same goal?

What is the goal?

Make sounds and art forms that I find artistically compelling.

Today I share 3 examples of using these tools in that pursuit.

live computer music performance

1. Live Sound Classification

Machine ListeningSystem

Machine Learning System


```
1 NeuralNetwork {
       var <>net, <>learningRate, e = 2.71828, <shape, <>activation, <>normalizedRanges;
 2
 3
 4
       *new {
 5
           arg shape, learningRate = 0.05, activation = "relu", normalizedRanges;
 6
           ^super.new.init(shape,learningRate,activation,normalizedRanges);
 7
       }
 8
 9
       init {
           arg shape_,learningRate_ = 0.05,activation_ = "relu",normalizedRanges_;
10
           shape = shape_;
11
12
           activation = activation_;
           learningRate = learningRate_;
13
           normalizedRanges = normalizedRanges_;
14
15
           net = shape.collect({
16
               arg nNeurons, i;
17
18
               var data = (
19
                   vals:Array.fill(nNeurons,{0}),
20
               );
               if(i > 0,{
21
22
                   // not input layer;
23
                    data.biases = Array.fill(nNeurons,{rrand(-1.0,1.0)});
                    data.weights = Array.fill(shape[i],{
24
                        Array.fill(shape[i-1], {rrand(-1.0, 1.0)});
25
26
                    });
               });
27
               data;
28
29
           });
```

```
feedLights = FeedLightMaster([
```

```
// distorted noise
FeedLightMode(nLights,[
    FeedLightGroup([
        \amplitude, \myAmp, \v, ControlSpec(0.01,1, \exp),
        \specCentroid,ControlSpec(50,5000,\exp),\h,ControlSpec(0.5,0.7),
        \specFlatness,nil.asSpec,\s,ControlSpec(1,0.3)
    ]),
    FeedLightGroup([
        \amplitude, \myAmp, \v, ControlSpec(0.01,1, \exp),
        \specCentroid,ControlSpec(50,5000,\exp),\h,ControlSpec(0.4,0.6),
        \specFlatness,nil.asSpec,\s,ControlSpec(1,0.3)
    ])
]),
// high squeal
FeedLightMode(nLights,[
    FeedLightGroup([
        \amplitude,\myAmp,\s,ControlSpec(0.5,0.9),
        \zeroCrossing,ControlSpec(3000,10000,\exp),\h,ControlSpec(0,0.25),
        constant,1,v,nil
        //\specFlatness,nil.asSpec,\w,ControlSpec(0,255),
        //\zeroCrossing,ControlSpec(50,6000,\exp),\r,ControlSpec(0,255)
    ]),
    FeedLightGroup([
```

```
\lambda_{ampli+ude} \lambda_{mvAmp} \lambda_{s} Control Spec(0.5.0.9)
```

2. Analysis / Resynthesis of Frequency Modulation Spectra

Live audio processing module

using sounds of frequency modulation synthesis

Carrier Freq.: base frequency of tone Modulation Freq.: smoothness or roughness of tone Index of Mod.: brightness of tone Creating Training Set
<u>Parametric Input</u> (R³)
Carrier Freq. Frequency
Modulation Freq. Moduation

Index of Modulation →

Creating Training Set
<u>Parametric Input</u> (R³)
Carrier Freq.
Modulation Freq.
Frequency
Moduation

→ Audio Signal→(FFT)→Spectrum (R⁵¹²)

Parametric Input (R³)

Sound Spectrum (R⁵¹²)

live demo

3. Collapsing userdefined expressivity into lower dimensions

The Goal

Using sound generators that have a high dimension of control inputs,

find expressively meaningful combinations of input settings,

then intelligently organized those settings in two dimensions.

🛑 😑 1: Granulator	000	TSNE Mapper			
		Random	Add to Set	Train TSNE	
Density: 14.12 Grain Size: 335 Loc: 0.83	Save to File				
Rate: 0.2 A Rand Pos A Rand Rate A Rand Size A	interpX interpY OUTPUTS				A A
Impul	cavityMatrix layer2 cavit	y1 module Gr	anulator density	Delete 0.71	
	cavityMatrix layer2 cavit	y1 module Gr	anulator size	Delete 0.67	
	cavityMatrix layer2 cavit	y1 module Gr	anulator loc	Delete 0.83	
	cavityMatrix layer2 cavit	y1 module Gr	anulator rate	Delete 0.33	

		TSNE Mapper					
				Random	Add to Set	Train TSN	
Vector Pr	<u>esets</u>						
				2 cavity1 module G	anulator		

		TSNE N	lapper			
		Random	Add to Set			
Vector Presets						
$a = [x_0, x_1, x_2, \dots x_{n-1}]$						
		2 cavitv1 module Gr	anulator	0.83		

		TSNE M			
		Random	Add to Set		
Vector Pres	ets				
$a = [x_0, x_1, x_2,]$. X _{n-1}]				
$b = [x_0, x_1, x_2,$. x _{n-1}]				
				0.83	
		2 cavity1 module Gr	anulator		

$\frac{\text{Vector Presets}}{a = [x_0, x_1, x_2, \dots x_{n-1}]}$ $b = [x_0, x_1, x_2, \dots x_{n-1}]$ $c = [x_0, x_1, x_2, \dots x_{n-1}]$

 $\begin{aligned} & \text{Vector Presets} \\ a &= [x_0, x_1, x_2, \dots x_{n-1}] \\ b &= [x_0, x_1, x_2, \dots x_{n-1}] \\ c &= [x_0, x_1, x_2, \dots x_{n-1}] \\ d &= [x_0, x_1, x_2, \dots x_{n-1}] \end{aligned}$

 $\begin{aligned} & \mathsf{Vector \ Presets} \\ & \mathsf{a} = [x_0, x_1, x_2, \dots x_{n-1}] \\ & \mathsf{b} = [x_0, x_1, x_2, \dots x_{n-1}] \\ & \mathsf{c} = [x_0, x_1, x_2, \dots x_{n-1}] \\ & \mathsf{d} = [x_0, x_1, x_2, \dots x_{n-1}] \end{aligned}$

-

TSNE

- t-Distributed Stochastic Neighbor Embedding
- Dimensionality Reduction Algorithm (taking data in a high number of dimensions and reorganizing it into 2 or 3 dimensions, such that it preserves it's structure)
- Vectors that are similar in high dimensional space are embedded near each other, while vectors dissimilar in high dimensional space are embedded far away

Munkres Algorithm

- aka "Hungarian Algorithm" or "Kuhn-Munkres Algorithm"
- Optimal solution to linear assignment problem
- Every element in set A (2D TSNE embedding locations) must be assigned to one unique element in set B (grid of locations in 2D space)


```
if(b.value == 0,{
              "% OFF".format(name).postln;
          },{
              "% ON".format(name).postln;
          });
      })
      .addToggleRequestNew(
          path,
          Rect(0,0,20,20),
          testSaver,
          testWin
      );
      if(addToMapper,{
          tsne.makeOutput(path);
     });
  });*/
  testWin.front;
andData = {
  arg tsne;
  23.do({ // works with 7 or greater...
      tsne.randomize;
      tsne.addToSet;
  });
  tsne.trainTSNE(true);
DManager_New.initIfNot;
                               £
ndow.closeAll;
sne = TSNEMapper();
akeWin.(~ranges,~tsne);
andData.(~tsne);
alog.savePanel({
  arg path;
  ~tsne.save.writeArchive(path);
```

;

live demo

granulator blue synth green granulator red? lots of params yellow

Benefits of TSNE / Munkres approach

- Preserves user-defined presets
- TSNE recognized as superior dimensionality reduction
- Munkres finds optimal solution
- Non-linear 2D layout requires practice to learn

Rejected Alternatives

- Neural Network supervised learning requires knowing the desired 2D structure before training
- Self-Organizing Maps doesn't guarantee that exact userdefined presets are preserved

Future Improvements

- Force-Directed Spreading out of data (able to handle larger datasets)
- Self Organizing Map (reduce redundancy in control vectors)
- Embeddings based on audio descriptions of outputs (instead of parameter inputs)
- Changes in 2D space prompted by machine listening and heuristics (improvising computer)

"The view according to which the novelty of a work guarantees its quality is often expressed in electroacoustic music circles, and for some it is the only criterion of worthiness."

-Francis Dhomont, For classicism

Thank you. Questions?

